Photodiodes for Initial and Advanced LIGO

LIGO Science Collaboration Meeting LHO, Hanford, Washington March 12-14, 1998

P. Csatorday, A. Marin, M. Zucker

LIGO Laboratory

Massachusetts Institute of Technology

Outline

- Requirements (M. Zucker):
 What does LIGO want from a photodiode?
- Existing LIGO I devices Part I (A. Marin):
 Power handling, RF characteristics, spatial uniformity
- Existing LIGO I devices Part II (P. Csatorday):
 Thermal dissipation, surface reflectance, backscatter
- Summary: Future directions for advanced LIGO

LIGO Photodetector Requirements

- Quantum efficiency
- SNR
- Linearity
- Spatial uniformity
- Backscatter
- Power handling: Steady-state
- Power handling: Transient

Front-End SNR

• LIGO I: $f_0 = 25 - 32 \text{ MHz}$

- Both R_D and C_D depend on device area, which affects...
 - Power handling (at least in principle)
 - Backscatter (through area*solid angle conservation)

Linearity

- Gain compression at level which affects SNR (~ few dB?)
- Noise: mechanisms poorly defined; "zoo" of possible effects which might induce signals at f_{θ} , including
 - Two-tone intermodulation, (2 f_0 +/- f_{GW}) X (2 f_0 +/- f'_{GW})
 - Hysteretic down conversion from $2f_0$ f_0 X intensity fluctuation
 - ???
- Need better models, testing with "realistic" photocurrent waveforms & noise sensitivities

Spatial Uniformity and Backscatter

• Spatial uniformity:

- Defeats modal orthogonality, enhancing effect of beam tube scattering recombination
 - Requirement can be relaxed with output mode cleaner
- PD Surface Backscatter

$$h_n^2 \sim P_{dp} \cdot BRDF \cdot \Delta\Omega \cdot \frac{\omega_0^2}{\omega_{pd}^2} \cdot \delta x_{pd}$$

- optical isolation (costs efficiency)
- seismic/acoustic isolation (costs \$)
- improved BRDF.
- larger detector area

Power handling (steady-state)

- $N_{pd} \ge P_{dp}/P_{MAX} \approx 4$; the fewer the better (SNR, \$, scatter,...)
- tradeoff against linearity

Power handling (transient)

 Sudden loss of lock releases stored energy U~3J thru dark port

P_{refl} rises briefly to 4 P_{in}

 EO shutter required (costs efficiency)

PD Specs Scaled to LIGO II Power and Sensitivity

Parameter	LIGO I	LIGO II	Current design
Steady-state power	0.6 W	3.0 W ^a	0.75 W
Transient damage	3 J / 10 ms	30 J / 10 ms	3 J / 10 ms
Signal/Noise	1.4 x 10 ¹⁰ Hz ^{1/2}	3.1 x 10 ¹⁰ Hz ^{1/2}	$1.5 \times 10^{10} \mathrm{Hz}^{1/2}$
Quantum efficiency	80%	90%	83%
Spatial uniformity	1% RMS	0.1% RMS	1% RMS
Surface backscatter	10 ⁻⁴ /sr	10 ⁻⁵ /sr ^b	< 10 ⁻⁴ /sr

a. Assuming a factor of two improvement in contrast defect

b. Assuming comparable active detector area.

Page 1

Note 1, Linda Turner, 04/21/98 09:01:43 AM LIGO-G980049-25-M