

Collaboration

Intensity Noise and the pre mode cleaner

Benno Willke

thanks to German Alexander von Humboldt-Stiftung for a Feodor Lynen fellowship

PSL Session

Summary

- The PSL has been frequency stabilized to the reference cavity, with in-the-loop performance being consistent with PSL requirements.
- Intensity stabilization to levels consistent with PSL requirements has been demonstrated.
- The output power delivered after the PMC is 8.7 W, which meets PSL requirements.
- The beam delivered by the PSL is a circular TEM₀₀ mode.

The Road Ahead (cont.)

- Issues for higher powers
 - >> Development of high power optical components such as Faraday isolators and EOMs.
 - >> Development of a PMC.

The Road Ahead

- Incorporation of temperature stabilization of the reference cavity to accommodate the tidal input.
- Demonstration of the viability of running the PMC in air and addressing issues concerning contamination of the mirror surfaces after prolonged exposure to high power.
- Demonstrate that the PSL can be reliably operated for long periods of time.
- Demonstration of remote operation and control via computer.
- Computer automated lock acquisition.
- Incorporation of internal and external diagnostic modes.

Other Performance Related Issues

Beam pointing

- >> Relies on beam pointing stability of the 126 MOPA laser. Currently there is some concern about this aspect of the laser but a retrofit of the internal mirror mounts is expected to resolve this issue.
- >> There is a beam pointing control unit before the modecleaner to control the beam into the interferometer.

Reliability

>> There are problems with the reliability of the master oscillator and possibly the power amplifier pump diodes.

Frequency Stabilization (cont.)

Frequency Stabilization

- Stabilization technique.
 - >> standard Pound-Drever-Hall (PDH) locking
 - >> 21.5 MHz modulation sidebands
- Nested loop strategy used to reach ultimate requirement.
 - >> wideband input from 12-m modecleaner
 - >> tidal input from either 2-km or 4-km interferometer
- Electro-optic modulator (EOM) located between the master oscillator and the power amplifier.
- Uses a fixed spacer reference cavity and a frequency shifter.

PSL (cont.)

Features

- >> Frequency stabilization scheme uses a nested loop strategy based on 3, progressively more stable, reference cavities.
 - 200-mm long fixed-spacer fused silica cavity, finesse ~ 10 000, bandwidth 74 kHz
 - 12-m long modecleaner
 - 4-km long interferometer
- >> Intensity stabilization via feedback control to the power amplifier pump diode current.
- >> Relative power fluctuations at the interferometer modulation frequencies of 24.5 MHz and 29.5 MHz are filtered by a triangular ring cavity, the premodecleaner (PMC).
 - >> Computer controlled via VME interface.

PSL

Design Requirements

>> frequency noise

$$- < 0.1 \times (100/f)^{2.5}$$
 Hz / $\sqrt{\text{Hz}}$ 40 Hz < $f < 100$ Hz

-
$$< 0.1 \times (100/f)$$
 Hz $/ \sqrt{\text{Hz}}$ 100 Hz $\le f < 1$ kHz

$$-$$
 < 1.0×10⁻² Hz / $\sqrt{\text{Hz}}$ 1 kHz $\leq f$ < 10 kHz

>> power fluctuations

$$-$$
 < 10⁻⁸ 1 / $\sqrt{\text{Hz}}$ 100 Hz < f < 10 kHz

>> output power

— The output power of the PSL is required to be at least 8.5 W in a circular TEM_{00} mode.

126 MOPA Performance (cont.) Relative Intensity Noise

126 MOPA Performance Frequency Noise

126 MOPA Laser Status

- Alpha-1 engineering prototype delivered October, 1997.
- First article delivered January, 1998.
- Second article expected to be delivered around April, 1998 after mirror mount retrofit.

The Lightwave Electronics 126 MOPA

- Double-passed MOPA configuration
 - >> master oscillator
 - Lightwave ElectronicsModel 126-1064-700 NPRO
 - >> power amplifier
 - 8 × 20 W diode bars pumping
 4 YAG rods
- Performance
 - >> power in $TEM_{00} > 10 \text{ W, cw}$
 - >> total power in non-TEM₀₀ < 1 W

The Lightwave 10-W Laser (cont.)

- >> relative power fluctuations
 - < 1% peak-to-peak over 24 hours</p>
 - < 3% peak-to-peak over 500 hours
- >> relative power fluctuations (cont.)
 - < 10⁻⁵ at 100 Hz
- >> beam pointing fluctuations < 10⁻⁵ at 100 Hz
- >> mean time between failures (MTBF) > 10 000 hours
- >> polarization extinction ratio > 300:1
- >> minimum time between required beam alignment adjustments > 2 500 hours

The Lightwave 10-W Laser

- Laser source developed under contract with Lightwave Electronics Inc., Mountain View, CA.
- Laser Specifications
 - >> wavelength 1064 nm
 - >> power in a circular TEM₀₀ mode > 10 W
 - >> total power in all non-TEM₀₀ modes < 1 W
 - >> relative spot size fluctuations < 2% peak-to-peak
 - >> frequency fluctuations < 500 Hz at 100 Hz.
 - >> frequency control via master oscillator actuators
 - >> power control via power amplifier current adjust actuator

PSL Optical Layout

Schedule

- Presently the PSL is in the preliminary design phase with a prototype being fabricated at Caltech.
- Prototype PSL laser scheduled to ship early April, 1998.
 More likely the laser will ship mid-to-late May, 1998.
- Shipment of some PSL components: optical table, optical mounting hardware ... etc. about to commence.
- Hanford 2-km interferometer installation April, 1998.
- Hanford 4-km interferometer installation November, 1998.
- Louisiana 4-km interferometer installation March, 1999.

Page 1

Note 1, Linda Turner, 04/21/98 08:55:37 AM LIGO-G980049-24-M