GLOBAL DIAGNOSTICS SYSTEM

LSC meeting
LIGO Hanford Observatory

March 12, 1998

Rolf Bork, Mark Pratt, David Shoemaker, Daniel Sigg

GOALS

☐ Assist the operators in the control room and in the experimental areas to successfully run the experiment.
☐ Provide immediate answers:
What is the quality of the GW data written to disk?Are all of the subsystems working properly?
☐ Establish & automate diagnostics procedures.
☐ Give assistance to:
O learn about the behavior of the instrument,
O classify abnormal environmental events,
O identify the exact machine state,
O correlate the signals of different sensors and,
O ultimately, reduce the large amount of measured data to a set of relevant and comprehensible statistical quantities.

OVERVIEW

- ☐ Viewing tool (part of DAQS)
- ☐ Recording tool (trend frames)
- □ Diagnostics test tool
- ☐ Search tool

DIAGNOSTICS TEST EXAMPLES

☐ Coupling of laser frequency noise into the gravitational wave band
☐ Parasitic Interferometers
☐ Coupling of beam jitter into the GW band
Optimization of the modulation depth
☐ Mode matching into the interferometer
☐ Determining the alignment sensitivity matrix
☐ Cavity ring-down measurements
☐ Sensitivity to seismic, acoustic, magnetic, etc.
☐ Determining wire resonances
☐ Beam centering
☐ Pendulum coupling of vertical to horizontal
☐ Diagonalize servo feedback paths

DIAGNOSTICS TEST ENGINE

DIAGNOSTICS TEST TEMPLATES

☐Time series measurement
☐ Power spectrum measurement
☐ Sine response
☐ Swept sine response
☐ Triggered pulse response
☐ Two-tone intermodulation test
☐ Harmonic distortion
☐ Pseudo-random stimulus / power spectrum measurement
☐ Pseudo-random stimulus / cross spectrum measurement
☐ Parameter sweep
☐ Parameter optimization

SEARCH TOOL

☐ Fast access to raw data
☐ Compute engine for FFTs
☐ Channel monitoring
O Time trace signal level
O Band limited power
O New spectral features
 Time trace rate of change
O Dead channel (RMS)
☐ Triggering & Flag channels
Highly configurable
 Simple to complex trigger logic and dependency
O Flag channels written back to DAQ for archival
O Event triggers
 Event queues & reconstruction
□ Data capture & analysis

TRIGGER EXAMPLES

□ Excess GW noise
☐ Beam intensity
☐ Laser source AM & FM noise
☐ Modulation depths & frequencies
☐ Servo control & error signals
☐ Narrow band features
☐ Actuator saturation
☐ Photodiode temperature, bias & dark current
□Earthquake
□Vibration
□Weather
□ Excitation system off?

DIAGNOSTICS SEARCH ENGINE

DIAGNOSTICS ARCHIVE

☐ Trend frames □ Parameter files O Channel monitoring thresholds O Trigger bank configuration O Diagnostic test operating parameters ☐ Diagnostics tests O transient data for deferred analysis O test descriptions & results □ Diagnostic events O Complete reference O Data or parameterization □ Other data O Video Oscilloscope traces

Page 1

Note 1, Linda Turner, 04/20/98 03:54:53 PM LIGO-G980049-10-M