NSF Review - Detector Status

S. Whitcomb

31 March 1998

Outline

- Overview
- Lasers and Optics
 - >>Technical accomplishments
 - >> Basis for ETC
 - >>Schedule status and issues
- Suspensions and Isolation
- Interferometer Sensing/Control
- Control and Data System
- Physics Environment Monitoring
- Summary

Cost Graph

Detector Milestones

Milestone	PMP Date	Projected
BSC Seismic Isolation FDR	4/98	6/98
HAM Seismic Isolation FDR	4/98	6/98
Core Optics Support FDR	2/98	8/98
Suspension FDR		9/97 (Act.)
Core Optics Components FDR	12/97	4/98
Input Optic FDR	4/98	3/98 (Act.)
Prestabilized Laser FDR	8/98	10/98
Alignment S&C FDR	4/98	7/98
Initial Alignment System FDR	-	4/98
Length S&C FDR	5/98	7/98
Detector System PDR	12/97	7/98
CDS Network Installation	4/98	3/98 (Act.)
Data Acquisition System FDR	4/98	4/98
Physics Environ. Mon. FDR	6/98	10/97 (Act.)
Initiate Interferometer Installation	7/98 (WA) 1/99 (LA)	7/98 (WA) 1/99 (LA)
Begin Coincidence Tests	12/00	12/00

LASERS AND OPTICS Technical Accomplishments

Prestabilized laser

- >>First 10 W diode-pumped Nd:YAG laser delivered to LIGO; second unit due by mid-April
- >>Acceptance testing at Lightwave at or near all output specifications, including demanding limits on intensity noise at 60 Hz harmonics
- >>Prestabilized laser prototype, including VME electronics, under test
- Optical tables delivered to Hanford this month; table enclosure delivery scheduled in April

Input Optics

- >>Final Design Review held last week
- >> Mode cleaner and mode matching optics being polished
- >> Fabrication of 2 km Small Optics Suspensions completed

LASERS AND OPTICS Technical Accomplishments, cont

Core optics

- >> All fused silica blanks delivered
- >>Over half of polished substrates received
- >> Full-sized Pathfinder optics coated at REO and tested at NIST show uniformity meets LIGO req'ts
- >>First 1064 nm coatings planned for early May

Core Optic Support

- >>Preliminary Design Review held early March
- >> Detailed design underway

LASERS AND OPTICS EAC

Subsystem	Budget	Cost + Commitment	EAC
Prestabilized Laser	2,908 k	1,766 k	2,915 k
Input Optics	1,840 k	935 k	1,840 k
Core Optics	7,556 k	6,316 k	7,883 k
Core Optics Support	1,918 k	488 k	1,918 k

• Variance: + 337 k (2%)

Basis of ETC

Prestabilized Laser

- >> Fabricated and purchased parts based on prototype costs
- >>Includes labor through 1998

Input Optics

- >> Component and fabricated parts based on detailed FDR list
- >>Includes labor through mid 1999

Core Optics

- >>Fixed price subcontracts for ~80% of fabrication effort already in place
- >>Includes labor through 1998

Core Optic Support

- >>Mixture of vendor quotes and engineering estimates for fabricated parts
- >>Includes labor through mid-1999

LASERS AND OPTICS Schedule

- Prestabilized laser and input optics will be ready for installation at Hanford by summer
- First core optics coating runs planned for May
 - >>Critical schedule issue is IR interferometer for certifying core optics
- Lasers and optics for subsequent interferometers should be available as needed

Suspensions and Isolation Technical Accomplishments

Large Optics Suspension

- >> Fabrication of most suspension mechanical components underway
- >>Installation tooling in final design phase
- >>First Article controller currently under test

Seismic Isolation System

- >>Piers, cross-beams, bellows deliveries starting!
- >>First run of constrained-layer-damped metal springs (450) starting to be delivered and tested
- >>First Article assembly just beginning for HAM test at Hanford
 - Critical path is assembly fixtures and tooling
 - Expect to authorize production of nonvacuum hardware by May

Suspensions and Isolation **EAC**

Subsystem	Budget	Cost + Commitment*	EAC
Seismic Isolation	11,609 k	8,480 k	13,270 k
Suspensions	3,266 k	751 k	1,512 k

^{* &}quot;Commitments" include priced options signed but not executed

• Variance: - 94 k (0.7%)

Suspensions and Isolation Basis of ETC

Large Optics Suspensions

- >>Suspension parts mostly under contract (~70%), but installation fixtures (\$100 k est) still in design
- >>Includes labor through 1998

Seismic Isolation Systems

- >>Fixed price subcontracts (with priced options) on ~75% of fabricated parts
- >>Includes labor through 1998

Suspensions and Isolation Schedule

- Large optics suspensions deliveries to start in April
- Vacuum preparation of suspensions a potential bottleneck for full installation
 - >>Oven for prebaking on order
- Seismic isolation fabrication is tight, dependent on success in first article assembly and test
 - >>Highest priority on HAM test to enable input optics installation

Interferometer Sensing and Control Technical Accomplishments

Input Optics Controls

>>Frequency and mode cleaner length and alignment control designs completed

Alignment Sensing and Control

- Alignment prototype fabrication and testing underway (essentially equivalent to input optics alignment system)
- >> Core optic installation alignment procedures finalized
- >>Initial alignment system (tooling for initial installation, optical levers, viewports) ready for final review
- >>Long-lead items for 2 km installation on order

Length Sensing and Control

- >> Continued development of preliminary design
- >> Detection-mode differential control design finalized
- >>DSP closed-loop prototype test underway on PNI
- >>ADC selected & tested to meet required signal to noise ratio
- >>CPU selected & tested to meet DSP timing requirements

INTERFEROMETER SENSING AND CONTROL EAC

Subsystem	Budget	Cost + Commitment	EAC
Alignment Sensing and Control	4,805 k	1,388 k	4,112 k
Length Sensing and Control	1,682 k	714 k	1,748 k

• Variance: - 629 k (-10%)

Interferometer Sensing and Control Basis of ETC

Alignment Sensing and Control

- >> Mostly vendor quotes (with a few engineering estimates) for parts and materials
- >>Includes labor through early 1999

Length Sensing and Control

- >>Minimal fabricated parts
- >>Includes labor through early 1999

Interferometer Sensing and Control Schedule

- Staffing shortages have delayed ISC and ISC/CDS design work
 - >> Have concentrated effort on two schedule-critical areas
 - Initial alignment system (viewports, optical levers, alignment tooling,...)
 - Input optics length and alignment control
 - >>Delays will permit completion of prototype tests before FDR, reducing technical risk
- Expect input optics control to meet input optics installation requirement
- Interferometer controls show just in time delivery
 - >>Among the last subsystems to be integrated
 - >>Ok if no problems encountered

CONTROL AND DATA SYSTEM Technical Accomplishments

Interferometer Controls and Diagnostics

- >>Large optic suspension controller first article being tested
- >> Prestabilized laser prototype being tested
- >>Prototype control system for input optics being built
- >>ADC's tested and proven for the LSC and ASC servos
- >>In vacuum cabling and feedthroughs for 2 km HAM chambers on order

Data Acquisition

- >>Prototype data acquisition system installed and tested on the 40 m interferometer
- >>Final design review scheduled for April

Global CDS and Infrastructure

- >>CDS network installation started in Hanford, scheduled to start in April in Livingston
- >> Vacuum controls integration underway in Hanford, fabrication for Livingston underway

CONTROL AND DATA SYSTEM **EAC**

Subsystem	Budget	Cost + Commitment	EAC
Interferometer Controls and Diagnostics	6,300 k	2,203 k	6,471 k
Data Acquisition	3,175 k	982 k	2,915 k
Global CDS and Infrastructure	3,256 k	2,401 k	3,294 k

• Variance: - 50 k (- 0.4%)

CONTROL AND DATA SYSTEM Basis of ETC

Interferometer Controls and Diagnostics

- >>Mixture of vendor quotes and engineering estimates for fabricated parts
- >>Includes labor through 1998

Data Acquisition

- >> Mostly catalog items for parts and materials
- >>Includes labor though 1998

Global CDS and Infrastructure

- >> Mostly catalog items for parts and materials
- >>Includes labor though 1998

CONTROL AND DATA SYSTEM Schedule

- Infrastructure and vacuum controls will be ready on schedule
- Prestabilized laser and input optics controls should be delivered as needed
- Data acquisition system ready for Physics Environment Monitoring by fall
- Critical item will be length control servo electronics
- Main cost risks are delays in design and fabrication and potential redesign/rework during integration

Physics Environment Monitoring System Technical Accomplishments

- Final Design Review held October 1997
- First items of PEM equipment delivered
 - >>Orders placed on ~15% of PEM hardware
- Schedule
 - >>Some installation to begin this spring
 - >> Most installation paced by detector installation
 - >>Correlations studies of PEM data between sites planned at earliest possible time

Physics Environment Monitoring System Basis of ETC

Subsystem	Budget	Cost + Commitment	EAC
Physics Environment Monitoring System	2196 k	327 k	2,152 k

- Bottoms-up re-estimate based on final design completed in January
 - >>80% of components are commercial
 - >>Includes labor through mid-1999
- CCB action to reduce costs by ~\$760k to match re-estimate

Summary

- Detector well underway to make the transition from design into full fabrication
 - >>First detector hardware deliveries to Hanford beginning
 - >>On-track to begin installation as soon as PSI finishes with vacuum diagonal section
- Up-dated ETC shows detector costs still under control
 - >> Parts and materials more certain than labor
 - >>Some subsystems up, some down, but net change is less than few%
 - >>Potential contingency need identified for staffing costs due to delays (up to 6 months)
 - Some fraction already incurred, between 1/3 and 1/2
 - Still expect completion within available contingency
- Still expect to reach 10⁻²¹ operation by end of 2001

