
COC

LIGO Status

Barry Barish
GWDAW-2
November 11th - 12th, 1997

Two LIGO Observatory Sites

LIGO the facility

- National Science Foundation
- Construction Project (1995-1999)
 - » Facilities and Initial Detector
- Commission Facility (1999-2001)
 - » Implement Initial Detectors
 - h ~ 10⁻²⁰ Coincidence (Hanford/Livingston)
 - Engineering run (end of 2000)
 - h ~ 10⁻²¹ Initial Design Sensitivity (end 2001)
- Full Operations (2002 + ...)
 - » Data Taking/Analysis
 - LIGO I (2 year run @ h ~ 10-21)
 - » Enhance Initial Detector
 - improved subsystems (lasers, test masses, etc)
 - » Advanced Detectors
 - new interferometer configurations

Coincidence Tests / Operations

20 of 36 LIGO-G970249-00-M

LIGO Plans

schedule

• 1	Main	Activ	ity
-----	------	-------	------------

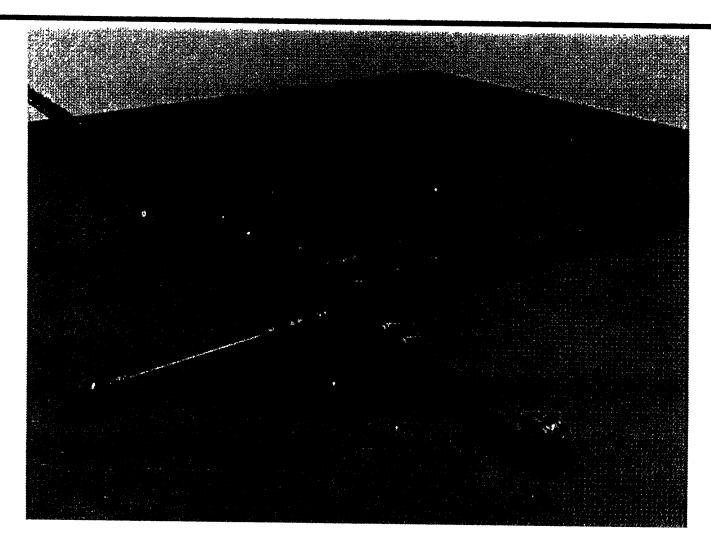
	••••
1996	Construction Underway
	-mostly civil
1997	Facility Construction
	-vacuum system
1998	Interferometer Construction
	-complete facilities
1999	Construction Complete
	-interferometers in vacuum
2000	Commission Detectors
	-first light; testing
2001	Engineering Tests
	-sensitivity; engineering run
2002	Initial LIGO Detector Run
	- h ~ 10 ⁻²¹

Technical Highlights - Hanford Civil Construction

- Hanford beam tube enclosures construction complete
- Hanford site buildings are complete, testing is underway
- Hanford buildings are all in joint occupancy or beneficial occupancy.
- Followon contractors now working in buildings
 - >> Beam tube bakeout insulation contractor working in enclosure for module X1 kickoff last week
 - >> Vacuum equipment installation contractor is working in LVEA and several other buildings
 - >>Office Support Building (OSB) furniture is inside and offices are being occupied
 - >> Computer network is being brought online

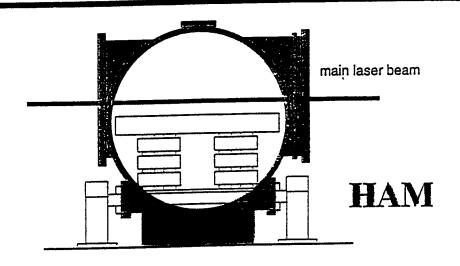
Technical Highlights - Livingston Construction

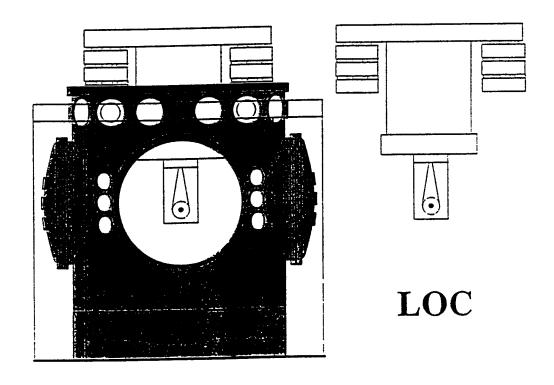
- First arm slab is complete
- Second arm slab is under construction
- Livingston buildings are in advanced stages of construction and are ahead of schedule
- Site access road problems have been successfully managed
- Site schedule coordination has dealt with several schedule disconnects and conflicts, preserving schedule



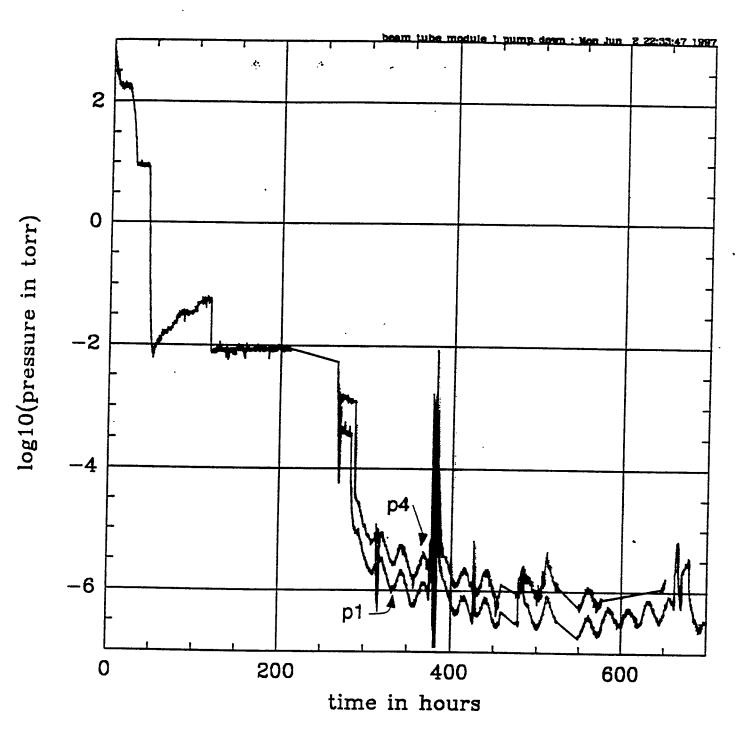
Technical Highlights - Vacuum Equipment

- Vacuum Chambers
 - >> Hanford vacuum equipment complete and being installed on site
 - >> Livingston vacuum equipment complete early in 1998
- Gate Valves
 - >> Hanford valves installed
 - >> First Livingston valves installed
 - others awaiting shipment when buildings are ready
- Pump sets in use to pump beam tube acceptance tests




Vacuum Equipment System Cartoon

SEI Configuration



Technical Highlights - Beam Tube

- Hanford Beam Tube Complete
 - >> X arm 2 km modules passed prebake outgassing and alignment
 - —Viton outgassing appears to provide limit to leak detection sensitivity, but well below our requirements
 - >> Y arm acceptance test underway
- All baffles installed at Hanford after resolving glass coating and weld cracking problems
- Livingston beam tube fabrication underway
- Livingston Installation is ready to proceed
 - >>Installation Readiness Review successfully completed last week

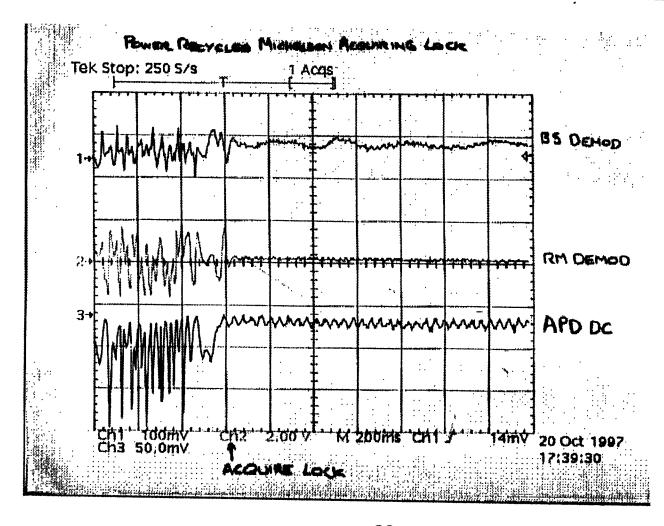
Outgassing Result From First 2 km Module

Table 1: Prebake Outgassing Rates (torr liters/sec cm²)

gas	measured at 11.00 hrs	assumed 1/t	comments
H ₂	< 7.4x10 ⁻¹⁴		larger than QT by 2 max correction for ordinary 304 SS $2.7 \times 10^5 \text{ cm}^2$ at $J(H_2) = 1 \times 10^{-11}$ $J_{\text{equiv}}(H_2) < 3.5 \times 10^{-14}$
CO	6.9 x 10 ⁻¹⁵	$7.6 \times 10^{-12} / t(hr)$	smaller than QT by 10
CO ₂	1.9 x 10 ⁻¹⁴	2.1 x10 ⁻¹¹ / t(hr)	smaller than QT by 2
CH ₄	5.2 x 10 ⁻¹⁶	5.6 x10 ⁻¹³ / t(hr)	larger than QT by 4
H ₂ O		8.0 x 10 ⁻⁹ / t(hr)	see table 7 and 8 smaller than QT by 2
Hydrocarbons ∑41, 43, 55, 57		8 x 10 ⁻³ * J(H ₂ O)	larger than QT by 2

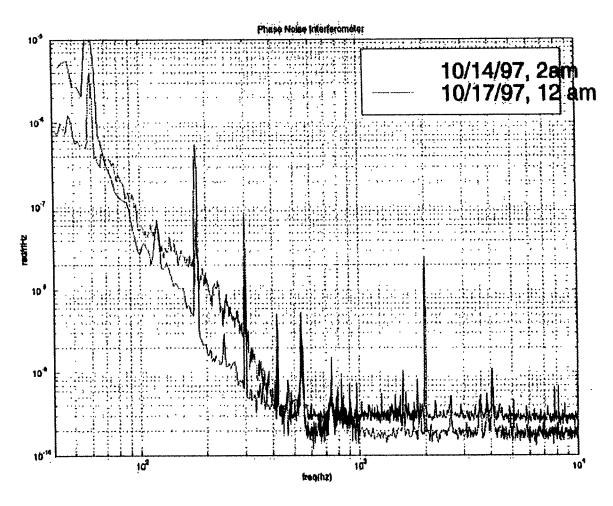
Technical Highlights - R&D

MIT Phase Noise Interferometer


>> Demonstration of phase sensitivity ~2 x 10^{-10} rad%Hz, with 150 W circulating 1064 nm light power

CIT 40 Meter Interferometer

- >> Power recycled Michelson is running with recycling gain ~4
 - -Lock acquisition guided by LIGO modeling
 - -Fabry Perot cavities to be added next
- >>LIGO end-to-end model has successfully reproduced single cavity response
 - more modeling tests planned



Power Recycled Michelson Acquiring Lock

Phase Noise Sensitivity From MIT Interferometer

Technical Highlights - Detector

- 10 W laser delivered by Lightwave Electronics; meets our power and noise requirements
- Most Corning and Heraus glass for core optics is delivered
 >> absorption requirements met
- Polishing and coating underway
- Seismic isolation fabrication contracts are being initiated
 - >> "creak" testing of springs carried out with encouraging results
 - >>"First Article" fabrication initiated

Technical Highlights - Detector

- Final designs for Length and Alignment Sensing and Control Systems underway
- Small Optics Suspension fabrication initiated
- Large Optics Suspension ready to bid mechanical fabrication
- Final design of Control and Data System global achitecture nearing completion
- Vacuum Control and Monitoring System complete and being readied for use in Hanford

Summary of Technical Status

- Facilities Buildings and Vacuum Systems nearly complete in Hanford and well along in Livingston
- Detector Design nearing completion;
 detector construction beginning