LDAS Prototyping & Testing

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997 *Kent Blackburn & Stuart Anderson, LIGO Laboratory*

Data Distribution and Testing

- >> Frame Compression
- >> Client / Server Frame I/O using Sockets
- >> High Speed Network Testing
- >> Quick Look Analysis with PAW

• Single Point Benchmarks

- >> FFT Benchmarks
- >> 40 meter data flow (GRASP) Benchmarks
- Scalable Template Analysis Modeling
- Periodic Source Searches

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

• Current of Frame I/O Library supports data compression:

GZIP Level	Differentiation	Translated Frame Size	Frame Size vs. Raw Data Size	Time (cpu) to Translate
None	No	1282532 KB	97.67%	975s (7.4%)
1	Yes	667693 KB	50.85%	1461s (75%)
1	No	726269 KB	55.31%	1494s (72%)
3	Yes	640549 KB	48.78%	1799s (78%)
3	No	706373 KB	53.80%	1863s (77%)
6	Yes	621157 KB	47.31%	3951s (91%)
6	No	697533 KB	53.12%	3187 s (83%)
9	Yes	619965 KB	47.21%	4940s (91%)
9	No	696613 KB	53.05%	4401s (87%)

- results from 200 MHz, single CPU Sun Ultra2 workstation
- nearly 50% reduction using 10x CPU increase & 1.5x increase clock time
- translates to direct savings in media!

- Implemented Client-Server Frame I/O support to DAQS
 - >> Design uses TCP/IP protocol over Unix Sockets (portable & flexible)
- Tunable parameters allow optimal performance
- Three hardware/OS configurations tested
 - >> Between Sun workstations via 10baseT ethernet
 - Peak performance 1 MB/sec
 - >> Baja MIPS processor to Sun Sparc10 via 10baseT ethernet
 - Peak performance 1.1 MB/sec
 - >> Baja MIPS processor to Sun Ultra via 100baseT ethernet
 - Peak performance 5.9 MB/sec (satisfies LIGO bandwidth needs!)

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

High Speed Network Tests at CACR

>> 100GB on Sun transferred over ATM to HPSS at bandwidth of 4.4MB/sec

• Bandwidth between protocols tested

	HIPPI (FP)	HIPPI	ATM
	Paragon-HPSS	(TCP/IP)	(TCP/IP)
	server		
HIPPI (FP)	Mem-Mem: 50MB/sec		
Paragon-HPSS	Parallel Filesystem-Mem:	-	-
server	JUNID/SCC		
HIPPI		HPSS Server-HPSS Server:	Sun-HPSS Server: 1MB/sec
(TCP/IP)	-	6MB/sec	HPSS Server-Sun: 0.2MB/sec
		Paragon-HPSS Server: 2.4MB/sec	Sun-SP2: 2MB/sec
ATM		Sun-HPSS Server: 1MB/sec	Sun-Sun: 9-14MB/sec
(TCP/IP)	-	HPSS Server-Sun: 0.2MB/sec	SP2-SP2: 10-15MB/sec
		Sun-SP2: 2MB/sec	Sun-HPSS Server: 7-9MB/sec

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

Quick-Look of 40m data with Frame I/O and PAW (n-tuples)

- Multiple channels of data viewed simultaneously
- Provides interactive (command line) interface
- Future: Time series signal processing (FFTs, spectral cross correlations...)

Single "Point" Benchmarks

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

• Fast Fourier Transform Benchmarks

>> MFLOPS based on 5Nlog₂N floating point operations

- >> Various processors tested
- >> Random complex values used in simulated signal

		MFlops	using	2 ¹⁶	complex	points	MFlops	using	2 ²¹	complex	points
CPU	MHz	NRv2	FFTpack	FFTW	ESSL	MLIB	NRv2	FFTpack	FFTW	ESSL	MLIB
Sun Ultra	168	21	35	74	-	-	10	17	61	-	-
RS6000	66	12	22	52	108	-	10	12	45	105	-
RS6000	135	13	20	84	65	-	9	10	62	153	-
PA8000	180	104	74	160	-	227	5	6	23	-	89
Pentium Pro	200	15	34	54	-	-	13	29	51	-	-

Single "Point" Benchmarks

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

- 40m Data Flow (GRASP) Benchmarks
 - >> Binary inspiral searches using optimal (Weiner) filtering
 - >> Results representative of generic short template searches
 - >> Benchmarks from 5 different systems:
 - LIGO's Sun Ultra cluster; SGI's Origin 2000; CACR's IBM SP2, Paragon & Beowulf
 - >> Demonstrates feasibility of implementing LIGO LDAS on-line systems

	Intel Paragon	SGI Origin 2000	Sun Ultra2 Workstation Cluster	<u>Beowulf</u> PentiumPro Cluster
Full LIGO (extrapolation)	205	90	116	96

Number of CPUs needed to keep up with LIGO data stream (extrapolation) using 1997 available systems <u>Beowulf</u> is the name given to a cluster of high performance Pentium Pro PCs running Linux

Scalable Template Analysis Modeling

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

• Significant component of on-line detection algorithms based on optimal (*Weiner*) filtering (*linear filtering*)

>> other filtering techniques: model independent - wavelets, adaptive,...

- Signal waveforms (templates) accurately known
- Uses FFT (inverse) to convolve data with templates
- Physics provides foundation for two classes of waveforms:
 - >> Inspiral of binary system of neutron stars and black holes ($\sim 10^4$ templates)
 - >> Quasi-normal mode ringdown of excited Kerr black holes (~10² templates)
 - Instrumental signitures also modeled by damped oscillators (small class of these)
- Analysis of data using templates *embarrassingly* parallel!

LDAS Modeling - Data Flow

LDAS Modeling - Excel Spreadsheet

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

- LDAS data flow diagram cast into Excel Spreadsheet
- Spreadsheet model include macro to micro details:

>> IFO data rates, algorithms, number nodes, ram, storage,...

>> clock cycles for floating point operations, memory copies, I/O,...

- Broken down into: source parameters, data conditioning, inspiral templates, ringdown templates & costs estimates
- Used to scope out performance and cost estimates for 3 different classes of computer systems: supercomputers, clusters of unix workstations, clusters of PCs (*Beowulf*)
- Model found to be in line with 40m data flow benchmarks!

LDAS Modeling - Data Conditioning

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

• Data Conditioning includes:

- >> calibration to best estimate of strain
 - linear regression of ancillary signals
 - narrow line removal
 - data dropout corrections
- >> data reduction (bandwidth & simplification)
- Much of the data conditioning carried out in frequency domain (FFT's and linear algebra involved)
- Equivalent to analysis associated with IFO diagnostics
- Can be carried out on single high end workstation!

LDAS Modeling - Data Conditioning

LDAS Modeling - Binary Inspiral

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

- Number of Templates: ~6.8x10⁵ (0.1 / Loss) (0.2 / M_{solar})^(5/3) (145Hz / f_{best})^(8/3)
 - >> Parameterized by
 - loss rate; desired fractional loss of events L
 - depth of search; minimum mass in binary system M
 - shape of instrument sensitivity; frequency of lowest noise fbest
- Long templates: for one solar mass this is ~90 second
- Frequency content of signal weighted up to ~1024Hz

>> reducing bandwidth reduces computation as ~N log₂N

 Searches down to one solar mass achievable with ~20 GFLOPS making on-line analysis possible!

LDAS Modeling - Binary Inspiral PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

LDAS Modeling - Binary Inspiral

LDAS Modeling - Ringdown

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

- Number of Templates: ~2700 (0.1 / Loss)(Q/100)(1+(log(f_{max}/10³)-log(f_{min}/10²))/2)
 - >> Parameterized by
 - loss rate; desired fractional loss of events L
 - quality factor Q (astrophysically < ~20; instrumentally much higher)
 - maximum frequency in search f_{max} (shot noise limits this to few kHz)
 - minimum frequency in search f_{min} (seismic wall in noise sets this at ~30Hz)
- Instrumental signatures will strongly mimic this waveform

>> useful for characterizing instruments non-Gaussian noise

>> binary inspiral of several tens of solar mass system followed by black hole ringdown (*precursor*) in LIGO band

• Requires roughly 1/100th the compute performance(cost)!

LDAS Modeling - Ringdown PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

LDAS Modeling - Ringdown PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

LDAS Modeling - Cost Estimates

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

Cost estimates made for 3 distinct classes of computing

>>Cost/performance for LDAS analysis on these systems spanned roughly one order of magnitude

- Supercomputers (fastest processors networks & memory)
- Clusters of Unix workstations connected by fast network
- Beowulf (Cluster of fast PCs using free software and fast network)
- >> consistent with 40 meter data flow (GRASP) benchmarks
- All 3 classes support ANSI compilers, MPI and POSIX
 - >> Same code can be run on all three systems
- Beowulf most cost effective system today! (~\$2000/node)

LDAS Modeling - Supercomputers

LDAS Modeling - Workstations PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

LDAS Modeling - PCs PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

LDAS Modeling - Comparison

Periodic Source Searches

PAC3 Meeting - Hanford WA, Nov. 6-7, 1997

Modeling effort underway to scale search algorithms

>>Periodic search represents different class of problem (>TFLOPS)

>> Communication fabric is heavily stressed by giga-point FFTs

>>Best sensitivity found with 1024
stacking: (~ weeks of data)

>> <u>NOT</u> an on-line search, however

>> Incoherent stacking of data optimizes computation for given sensitivity

 All curves involve search over period;
 top 3 include search for first derivative of period in time

