

1

A Symmetric, Robust Grating Angular Sensor for LIGO Sensing and Control

Ke-Xun Sun, Patrick Lu, and Robert Byer Stanford University

LIGO Science Collaboration (LSC) Meeting Louisiana State University August 16, 2006

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

Possible LIGO Installations Options

Illumination

Back of the high reflectors

Intermediate test mass Or suspension point interferometer

2

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

Grating Based Angular Sensor Sensitive to Differential Movement of the Diffracted Beams

$$d(\sin\theta_m - \sin\theta_{in}) = m\lambda$$

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

LIGO-G060485-00-Z

Overall Enhancement of Angular Sensitivity

K. Sun, S. Buchman, and R. L. Byer, "Grating Angle Magnification Enhanced Angular and Integrated Sensors for LISA Applications," accepted for publication at J. Phys. C. Special issue of Almadi 6 Conference on Gravitational Waves

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

4

Robustness of the Symmetric Grating Angular Sensor

Δv induced angular movement also magnified by grating

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

LIGO-G060485-00-Z

Common Mode Rejection to Reduce the Laser Frequency Noise Effect (Angular Signal Doubled)

Laser Frequency Variation $\Delta\nu$

 $(\Delta \theta_{+1} - \Delta \theta_{-1}) = CMRR \times (\Delta \theta_{\pm 1})$ $I(\Delta \theta_{+1} - \Delta \theta_{-1}) = CMRR \times I(\Delta \theta_{\pm 1})$

Common mode rejection also works for

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

6

CMRR Loosens Laser Frequency Stability Requirements Example given: CMRR ~10³

Symmetric Grating Angular Senor Experiment

Ke-Xun Sun, Patrick Lu, and Robert L. Byer, "A robust, symmetric grating angular sensor", LISA 6th Symposium, 19-23 June 2006, Goddard Space Flight Center, Greenbelt, MD

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

8

Signal Spectrum for 1 mW Incident Power Noise floor lower than 2 nrad/Hz^{1/2}

- PZT displacement 10 nm
- Grating rotation 0.5 µrad
- SNR ~50 dB
- Noise floor level
 - ~2 nrad/ /Hz^{1/2}

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

9

- PZT displacement 10 nm
- Grating rotation 0.5 µrad
- 4 mW input power
- Noise floor level ~1 nrad/ /Hz¹
- Potential applications:
 - Telescope orientation
 - Fiber collimator orientation
 - Coarse Frequency stabilizatio

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

10

Signal Spectrum for 44 mW Incident Power

- PZT displacement 10 nm
- Grating rotation 0.5 µrad
- 4 mW input power
- Noise floor level ~0.3 nrad/ /Hz^{1/2}

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

11

Robustness Against Laser Frequency Variations

NPRO laser head temperature: 35^oC

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

12

Symmetry Enabled Robustness Against Laser Frequency Variations

Improvements of Grating Quality

- Transfer-imprinting of gold gratings
 - This is performed by pressing a dielectric grating into a gold surface with force sufficient to exceed the yield stress of gold
 - Centimeter-sized dielectric gratings were fabricated with e-beam lithography on quartz wafers.
 - Gold gratings had 933 lines/mm and 300nm of depth.
 - Various duty cycles have been demonstrated.
 - 275nm depth 50% duty cycle gold gratings have been measured to have 26% diffraction efficiency in the +/-1 orders and 36% efficiency in the 0th order.

Patrick Lu, Ke-Xun Sun, and Robert L. Byer, "Methods of Fabricating Grating Patterns on Dielectric and Metal Surfaces", LISA 6th Symposium, 19-23 June 2006, Goddard Space Flight Center, Greenbelt, MD

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

14

Grating Fabrication Improvements

- 1. Electron-beam lithographic techniques for dielectric gratings
 - More masking in all steps
- 2. Trans-Imprinting for metallic gratings
 - pressure optimization
- 3. Focused Ion Beam
 - Beam current optimization
 - Focusing optimization
- 4. Ion etcher (Collaboration with LLNL)

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

Grating Duty Cycle Variation

Chrome etch mask 25% duty cycle.

Chrome etch mask 75% duty cycle.

LSC Meeting August , 2006 Louisiana State University

16

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

Grating Fabrication for Grating Angular Sensor

- Direct ion milling of gold gratings
 - 1 mm gratings with 50% duty cycle and 300nm depth have been fabricated.
 - Performed using an FEI Focused Ion Beam machine
 - Efficiency of +/-1 order: >20%
 - Studying the "side lobes"

LSC Meeting August , 2006 Louisiana State University

17

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

Gratings Can Be Cost Effective

• 2 mm or 3 mm square grating is big enough for

- Smaller gratings can cut from a large wafer
- 100s gratings made at once time
- 10s dollars per grating

18

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

Conclusion

- Symmetric grating angular sensor sensitivity beats 1 nrad/Hz^{1/2}
- Symmetric grating angular sensor with proper electronics chain is more robust against laser frequency noises
- In-house grating fabrication techniques allow grating elements to be produced cost effectively
- Future tasks
 - Electronics for higher sensitivity
 - Environmental control for lower frequencies

LSC Meeting August , 2006 Louisiana State University

LIGO_LSC_Sun_Grating_060816.ppt, K. Sun

20

Acknowledgements

- Support for this project comes from
 - NSF LIGO for gravitational wave detection
 - LLNL for supporting high power dielectric grating development for Stanford LIGO program
 - JPL DRDF for precision angular sensing for LISA proof mass sensing

