R\&D for AdLIGO ASC Detectors

LSC Meeting August 2006

Richard Abbott

advancedigo ASC Diode R\&D Highlights

- In Vacuum Detectors
- Lower Front-end Noise
- Higher Optical Power
- Higher Modulation Frequencies
» Up to 100MHz
- Down-select of Candidate InGaAs Diodes

Vacuum enclosure

- In-vacuum Detectors
» Circuitry mounted on the back of a conflat using Zero-length flanges as spacer
" Photo-detector is in vacuum and feeds through flange with electrical feed-through
» Electrical connectors mounted on opposing conflat flange

- So far, 4 Quad-diodes have been purchased
» Hamamatsu G6849, 2mm diode
» OSI Optoelectronics Inc. Q3000, 3mm diode
» Electro-Optical Systems Inc. IGA-020-QD, 2mm diode
» Electro-Optical Systems Inc. IGA-030-QD, 3mm diode
- Test jigs for each diode have been prepared
- Some very preliminary data has been taken on the Q3000
» At -5 V reverse bias and a test frequency of 70 MHz , the diode segment is represented by a $\sim 30 \mathrm{pF}-20 \Omega$ series circuit
» The diode was resonated with an inductor which resulted in a 70 MHz resonant peak having a quality factor (Q) of ~ 2
» This test yields a transimpedance of $\sim 100 \Omega$

advancedligo
 Some Needed Data

- The test program for the down-select of photo-diodes should include
» Equivalent circuit model vs. frequency
» Cross-talk from segment to segment
» Thermal performance data
» Capacitance vs. reverse bias data
» Performance of diode when resonated as evaluated with AM modulated laser setup

advancedligo
 Diode Example

- Q3000 OSI 3mm photo-detector

advancedligo Test Jig

- All 4 candidate diodes on a single board with symmetric traces to test connectors (other side of this view)

