

New FFT simulation tool and a few applications

Hiro Yamamoto, Caltech/LIGO

Introduction

- » Requirements to be identified for AdvLIGO
- » LIGO I research tool
- » old FFT, melody and new FFT
- Static IFO Simulation
 - » Physics
 - » Implementation
- A few applications
 - » surface aberration and loss
 - » Parametric Instability
 - by Bill Kells and Hans Bantilan

New FFT at August 06 LSC mtg

1

G060386

Introduction

- AdvLIGO, to be analyzed
 - » Tolerance of radius of curvature of COC mirrors
 - Yi Pan's estimation of 2076 +3m 1m too stringent
 - » Surface aberration
 - Requirements of the surface quality to satisfy the limit of loss in arm, total of 75ppm
 - Loss due to dusts
 - » Parametric instability
 - highly distorted field, hard to be expressed by simple functions
- LIGO I, how MIT-FFT was used
 - » Base design
 - IFO basic parameters, surface figure requirements, etc
 - » Commissioning
 - Thermal effect, as-built mirror effect, realistic optical gain, etc

G060386

New FFT at August 06 LSC mtg

Introduction

Motivation of new software

- » old MIT-FFT
 - coded for specific configurations
 - some physics not easily simulated
 - hard to use as-built data information
 - hard to modify
- » melody modal model
 - limited spatial resolution
 - not quite reliable for degenerate configurations, or when modal expansion with finite modes is not enough

G060386

Static IFO Simulation

Object oriented code using C++

- » ease of modification, adding compensation plate, degenerate to nondegenerate Michelson cavity, etc
- FFT using adaptive grid size
 - » The beam size changes a lot in a concentric configuration.
 - » Higher order mode needs this treatment for proper propagation.
- Cavity lock using "error" signal, similar to real LSC
- Ease of loading a variety of formats of data file
 » Wyko, ...
- Mirror surface aberration generator with proper spectrum
- Distributions can be specified by analytic formula
- FP completed -> advLIGO underway

G060386

New FFT at August 06 LSC mtg

G060386

Input file specifying a FP

```
% Basic FFT setup
Nfft = 256
Wfft = 0.70
% mirror definition = [ aperture, thickness, mech, opt ]
ITM.aperture = 0.34
% mirror mechanical data = [x, y, z, tX, tY, tZ]
% mirror optoical data =
  [ T, R, ROC, reflIndex, "phasemap_xy", "phasemap_file" ]
ROC = 2076
ITM.opt.HR.ROC = ROC or
ITM.opt.HR.d = "r*r/(2*ROC)"
% mirror noise data = \lceil rand_seed, rms, power, "weightExp", WykoIndex \rceil
% cavity definition = [L0, delL, matchToInput]
% inputBeam definition =
  [ "BeamType", index1, index2, waistSize, waistPosition, matchToCavity ]
```


Running the program

r	next action			
	lock modeAmp simSpec	calcField saveField runSpec	timeTrace mirrorInfo summary	delL storeMap exit
Ş	Gelect 1 item(s)		_	

- Lock
- Calculate field under a given condition
- View fields using mode expansion
- Save fields
- change configuration
- •

Loss due to mirror aberration

- Upper limit of total loss per arm : 75ppm
- assuming the issue of the spotty bright point losses are solved, what is the requirement of the surface aberration to satisfy this condition?
- Is the known signature of CSIRO polishing, orange peel, significant?

1-D spatial PSD LIGO I Core Optics vs simulated noise

N = 256W = 70 cm

LIGO

rms : 0.5nm |
2 surfaces
with loss
25ppm & 35ppm

G060386

LIGO Investigating a Parametric Instability in the LIGO Test Masses

- SUFR project by Hans Bantilan, mentored by Bill Kells
 » G060385-00-Z
- Simulate a stationary field for a given acoustic mode, instead of using modal expansion, to calculate the overlapping integral
- Combined with Dennis' FEM package to calculate acoustic modes
- 9061 modes for f < 90KHz

