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Light fields are pondero-
motively squeezed

Masses are locked by 
the optical spring

Quantum mechanics of 40kg masses

AdLIGO=high-power detuned RSE

Can we see quantum behavior of test masses?
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Test mass in a potential well

1/4 period1/4 period

V = kx2/2
Wave function 

QM tells the wave function of the masses in a squeezed 
state should decay and recover in one period.

To see this quantum behavior, we should 

1.  Prepare a squeezed state of the test mass,
2.  Wait for a while to let it grow,
3.  And detect the distribution to see the result
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Points in each stage

1. Preparation stage

2. Waiting stage

3.  Detection stage

Mass should better be close to a pure quantum state.
Squeezing state should be prepared.

Environment may destroy a quantum state.
(=decoherence)

We’ll measure the mass position one by one 
and see the distribution. This will be easy.



How to prepare a squeezed state

V = kx2/2

Step 1: Initial state should better be close to a pure state.
We’ll need feedback control.

Step 2: In AdLIGO, the center of mass position in differential
mode (L-) is in a potential well of optical spring, then…

V = k’x2/2 (k’>k)
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V = kx2/2

Changing the position of the SR mirror quickly 
will alter k and leave the mass in a squeezed state!

gradual sudden



What is a pure state?

Let’s say we have only states A and B: BA φφψ +=

ψψρ =The difference appears in the density matrix:

Quantum objects            superposition of A and B

Classical objects             either A or B

Pure state                coefficient on |φA><φB| doesn’t decrease

Mixed state             coefficient on |φA><φB| decreases

Decoherence
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Non-diagonal term in the density matrix
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ex.) thermal decoherence, 
control-noise decoherence, 
gravity decoherence, .. etc.



Thermal decoherence
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A hit of classical force doesn’t make a decoherence 

The phase on |φA><φB| changes by α=αA-αB.
It’s not decreasing            no decoherence 
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But the situation differs when F is a random force



Thermal decoherence
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add them all 0

decoherence!! 
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What does decoherence actually mean?

1/4 period1/4 period

V = kx2/2
Environment

Classical random distribution

• Quantum wave function recovers to the initial squeezed state
but classical noise doesn’t recover.

• We cannot see the quantum behavior if decoherence is big.

• Decoherence effect accumulates in each one period.
(random walk)



Estimation of environmental decoherence
Assuming a Gaussian state,

N: number of periods 
q: squeezed factor
Scl: spectrum of classical noiseω
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In the case of AdLIGO,

Optical spring frequency would be 
able to move between 50-150Hz.

e2q=sqrt[3]

Classical noise could be about the 
same as the SQL at 100Hz.

Scl/SSQL=1
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One more thing we should be careful about

We will need feedback control to

• prepare the initial vacuum state

• suppress the instability of the spring

Here, one concern might be if the quantum state 
disappears after the photo-detection, but…

Measurement itself doesn’t make state reduction.
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Measurement and control

Test mass fluctuation

Light field fluctuation

Measurement result = treated as classical
but, 
We don’t know how much of x with p
and how much of a2 with a1 are included. 

x, p^  ^
a1, a2^   ^
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Reason to keep the quantum property

Ref: V.Braginsky et al, PRD 2003



Control-noise decoherence

However, the feedback imposes force onto the mass.

Test mass fluctuation

Light field fluctuation

x, p^  ^
a1, a2^   ^

+ electric noise, 
laser noise, etc.

Random force due to control noise makes decoherence 
just like the random thermal force.

bz
^
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Summary of the proposed experiment

1. Preparation stage

2. Waiting stage

3.  Detection stage

• Initial quantum state should be prepared by control
• Altering the optical spring makes a squeezed state
• Control noise should be investigated

• Thermal decoherence may be seen in AdLIGO
• Quantum behavior may remain after the 1st period

• This will be hopefully easy.



16

A couple of more slides for further discussions

1. Are there any fancy configurations to see 
quantum behavior more clearly?

Proposal of using a Schroedinger’s cat state

2. Is there a border of quantum and classical?
Even if there is no influence from environment?

Penrose’s hypothesis of gravity decoherence  



Proposal of using a Schroedinger’s-cat state
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Double-well potential : V=k1x4-k2x2

Numerical calculation of 
Schroedinger equation

Quantum behavior will be more clearly seen.

Non-linear 
feedback 
is required
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Gravity decoherence

There is a gravity potential between two possible masses

Gravity potential ΔE

Heisenberg’s Uncertainty Principle allows instantaneous 
violation of energy conservation; ΔEΔt~h.
Heavy masses become a single mass after short time.

single photon Tiny photon-counter
BS

It’s hard to test this as is easily hidden under thermal decoherence.



What we are doing now

• How well can we prepare an initial quantum state

• How can we make a Schroedinger’s-cat state

• How can we calculate the time-evolution of density matrix
with a non-linear feedback control

Yanbei will lead further discussions…



Yanbei’s talk & discussions



State Preparation via Linear Feedback Control

• Feeding measurement results of a QND observable back to the system: 
quantum dynamics undisturbed by measurement [i.e., as if there were no 
measurements done.]

• Quantum Heisenberg Equations equivalent to Classical Equations of 
Motion, including control.

a (t)

i
KC

xH(t)ˆ
b (t) pH(t)ˆ

Techniques of linear control will apply!!



• A stable linear system: final “state” does not depend on initial “state”. 

• [Heisenberg Picture] Mirror Position Operator driven by noise operators

State Preparation via Linear Feedback Control

 integral of driving fields over 
finite history = +

A only has negative 
eigenvalues, 

decay to 0 very soon

usually stationary, like
vacuum optical fields, 

thermal force, etc.

a (t)

i
KC

xH(t)ˆ
b (t) pH(t)ˆ

Test-mass state will be Gaussian, fully 
characterized by

only finite history matters,
due to stability



State Preparation via Linear Feedback Control
• Preliminary example: Signal-Recycling Interferometer, slight modification of the 

controller in Buonanno & Chen, PRD 67, 062002 (2003)

• Pre-preliminary result: Can also prepare pure state, at least with the help of input 
squeezing. [Without using momentum feedback, as in Caves & Milburn 1987.]

from photocurrent
to force on mirror

~ optical response

Very simple controller!!

control parameter (damping)

factor ~2 away
from pure state



Summary of Current Understanding

State 
Preparation Evolution Detection

Classical 
Environment ? ?

Quantum 
Mechanics ? ?
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