# Macroscopic Quantum Measurement in AdLIGO

#### **K.Somiya**

presenting for

Y.Chen, C.Cutler, I.Mandel, Y.Mino, Helge Müller-Ebhardt, Y.Pan, K.Thorne, S.Waldman, and R.Ward



## Quantum mechanics of 40kg masses



Can we see quantum behavior of test masses?

## Test mass in a potential well

QM tells the wave function of the masses in a squeezed state should decay and recover in one period.



To see this quantum behavior, we should

- 1. Prepare a squeezed state of the test mass,
- 2. Wait for a while to let it grow,
- 3. And detect the distribution to see the result

## Points in each stage

#### 1. Preparation stage

Mass should better be close to a <u>pure</u> quantum state. Squeezing state should be prepared.

#### 2. Waiting stage

Environment may destroy a quantum state. (=decoherence)

#### 3. Detection stage

We'll measure the mass position one by one and see the distribution. This will be easy.

## How to prepare a squeezed state

Step 1: Initial state should better be close to a pure state.

We'll need feedback control.

Step 2: In AdLIGO, the center of mass position in differential mode (L-) is in a potential well of optical spring, then...



Changing the position of the SR mirror quickly will alter k and leave the mass in a squeezed state!

## What is a pure state?

Let's say we have only states A and B:  $|\psi\rangle = |\phi_A\rangle + |\phi_B\rangle$ 

Quantum objects ---- superposition of A and B

Classical objects —— either A or B

The difference appears in the density matrix:  $\rho = |\psi\rangle\langle\psi|$ 

Pure state  $\longrightarrow$  coefficient on  $|\phi_A\rangle < \phi_B|$  doesn't decrease

Mixed state  $\longrightarrow$  coefficient on  $|\phi_A\rangle < \phi_B|$  decreases

**Decoherence** 

## Non-diagonal term in the density matrix

$$\rho = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \quad \text{pure state}$$

$$\rho = \begin{pmatrix} 1/2 & <1/2 \\ <1/2 & 1/2 \end{pmatrix} \quad \text{mixed state}$$

$$\rho = \begin{pmatrix} 1/2 & 1/2 \\ <1/2 & 1/2 \end{pmatrix} \quad \text{classical}$$
Decoherence

ex.) thermal decoherence, control-noise decoherence, gravity decoherence, .. etc.

#### Thermal decoherence

A hit of classical force doesn't make a decoherence



The phase on  $|\phi_A\rangle < \phi_B|$  changes by  $\alpha = \alpha_A - \alpha_B$ . It's not decreasing  $\longrightarrow$  no decoherence

But the situation differs when F is a random force

#### Thermal decoherence



#### Random force makes a random phase shift.



add them all ---

decoherence!!

## What does decoherence actually mean?



- Quantum wave function recovers to the initial squeezed state but classical noise doesn't recover.
- We cannot see the quantum behavior if decoherence is big.
- Decoherence effect accumulates in each one period. (random walk)

#### Estimation of environmental decoherence

Assuming a Gaussian state,

$$\langle x^2 \rangle = \left( e^{-2q} + \frac{N\pi}{2} \frac{S_{cl}}{S_{SQL}} \right) \frac{\hbar}{2m\omega}$$

N: number of periodsq: squeezed factorScl: spectrum of classical noise



In the case of AdLIGO,

Optical spring frequency would be able to move between 50-150Hz.

$$\longrightarrow e^{2q} = \operatorname{sqrt}[3]$$

Classical noise could be about the same as the SQL at 100Hz.

$$\longrightarrow$$
 Scl/SsQL=1

$$\stackrel{1}{\longrightarrow} \left( \right)^{\frac{1}{2}} = \underbrace{0.76 \rightarrow 1.59 \rightarrow 1.47 \rightarrow \dots}_{N=1}$$

## One more thing we should be careful about

We will need feedback control to

- prepare the initial vacuum state
   suppress the instability of the spring

Here, one concern might be if the quantum state disappears after the photo-detection, but...

Measurement itself doesn't make state reduction.

#### Measurement and control



Measurement result = treated as classical but,

We don't know how much of x with p and how much of a2 with a1 are included.

Reason to keep the quantum property

### **Control-noise decoherence**

However, the feedback imposes force onto the mass.



Random force due to control noise makes decoherence just like the random thermal force.

## Summary of the proposed experiment

#### 1. Preparation stage

- Initial quantum state should be prepared by control
- Altering the optical spring makes a squeezed state
- Control noise should be investigated

#### 2. Waiting stage

- Thermal decoherence may be seen in AdLIGO
- Quantum behavior may remain after the 1st period

#### 3. Detection stage

• This will be hopefully easy.

## A couple of more slides for further discussions

1. Are there any fancy configurations to see quantum behavior more clearly?



Proposal of using a Schroedinger's cat state

2. Is there a border of quantum and classical? Even if there is no influence from environment?



Penrose's hypothesis of gravity decoherence

## Proposal of using a Schroedinger's-cat state



## **Gravity decoherence**

There is a gravity potential between two possible masses



Heisenberg's Uncertainty Principle allows instantaneous violation of energy conservation;  $\Delta E \Delta t \sim \hbar$ . Heavy masses become a single mass after short time.

It's hard to test this as is easily hidden under thermal decoherence.

## What we are doing now

- How well can we prepare an initial quantum state
- How can we make a Schroedinger's-cat state
- How can we calculate the time-evolution of density matrix with a non-linear feedback control

Yanbei will lead further discussions...

## Yanbei's talk & discussions

#### State Preparation via Linear Feedback Control

- Feeding measurement results of a QND observable back to the system: quantum dynamics undisturbed by measurement [i.e., as if there were no measurements done.]
- Quantum Heisenberg Equations equivalent to Classical Equations of Motion, including control.



$$\frac{d\hat{x}(t)}{dt} = \frac{\hat{p}(t)}{m}$$

$$\frac{d\hat{p}(t)}{dt} = \underbrace{\sqrt{I}\hat{a}_1(t)}_{\text{rad. pres.}} + \underbrace{\int_0^t dt' K_{\mathcal{C}}(t-t')\hat{b}_{\zeta}(t')}_{\text{feedback}}$$

$$\hat{b}_{\zeta}(t) = \underbrace{\hat{a}_{\zeta}(t)}_{\text{shot noise}} + \underbrace{\sqrt{I}\hat{x}(t)\cos\zeta}_{\text{"signal"}}$$

Techniques of linear control will apply!!

#### State Preparation via Linear Feedback Control

• A stable linear system: final "state" does not depend on initial "state".



usually stationary, like vacuum optical fields, thermal force, etc.

A only has negative eigenvalues, decay to 0 very soon

• [Heisenberg Picture] Mirror Position Operator driven by noise operators



$$\hat{x}^{H}(t) = \int_{-\infty}^{t} \left[ A_{1,2}(t - t') a_{1,2}(t') \right] dt'$$

only finite history matters, due to stability

Test-mass state will be Gaussian, fully characterized by

$$\langle \hat{x}^H \hat{x}^H \rangle, \ \langle \hat{x}^H \hat{p}^H + \hat{p}^H \hat{x}^H \rangle, \ \langle \hat{p}^H \hat{p}^H \rangle$$

#### State Preparation via Linear Feedback Control

• Preliminary example: Signal-Recycling Interferometer, slight modification of the controller in Buonanno & Chen, PRD 67, 062002 (2003)





• **Pre-preliminary result:** Can also prepare pure state, at least with the help of input squeezing. [Without using momentum feedback, as in Caves & Milburn 1987.]

## **Summary of Current Understanding**

|                          | State<br>Preparation | Evolution | Detection |
|--------------------------|----------------------|-----------|-----------|
| Classical<br>Environment | ?                    | 0         | ?         |
| Quantum<br>Mechanics     |                      |           |           |