

HAM Passive Seismic Attenuation System (SAS) System Performance, Fabrication, Assembly, Installation

Riccardo DeSalvo, Valerio Boschi, Dennis Coyne, Yumei Huang, Virginio Sannnibale LIGO Gravitational Wave Observatories California Institute of Technology

LIGO-G060128-00-R

LIGO A seismically attenuated optical bench for the HAM chambers

Attenuation in the vertical direction, the GAS springs

Performances

- Deliver more than 60 dB attenuation at > 1 Hz
- Single, passive layer attenuation to satisfy requirements and minimize complexity
- Significant attenuation at the micro seismic peak
- Internal damping for minimized control burden
- Tidal control with pointing accuracy at ~ nm level
- No standing control forces
- Earthquake protection for up to ± 12 mm shakes

Performances

- <u>Reliability !!!</u>
- 1. No active components in vacuum
 - Only coils in vacuum
 - No electronics failures in vacuum ! ! !
 - No power dissipation under vacuum !!!
- 2. No sealed gas volumes in vacuum
 - No chance of crippling virtual leaks !!!
- 3. Four actuator/sensor groups for each three d.o.f.
 - functions unimpeded by one sensor/actuator failure
- 4. Functionality unimpeded by power losses
 - (earthquake protection)

Difficulties

• Careful tuning and weight watching required.

Assembly philosophy

- Clean assembly and factory tuning
 - Minimize expense of LIGO manpower
 - Training fabricators to our procedures
- Shipping clean assembly
 - Develop clean installation techniques in HAMs
 - Install populated optical bench

assy.-proc.-D050198.doc

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

- LF tune sets the attenuation startup
 - Can tune to 30 mHz
- 60 dB c.o.p. attenuation limit
 - Can exceed with CW.

Frequency [Hz]

Lowering the system stiffness to 30 mHz

The Transfer Function shifts to lower frequencies, The Q factor decreases

LIGO Origin of Q-factor decrease advantage

- The GAS process cancels the return forces
- Reduces the oscillation frequency $\boldsymbol{\omega}$
- Not the dissipation processed
- Energy dissipation(per cycle) $\delta E = constant$
- Kynetic Energy $E_k \sim \omega^2$
- $Q = E_k / \delta E \implies Q --> 0 \sim 1 / \omega^2$

No damping required !

Magnitude [dB]

Magic wand tuning 80 dB GAS springs vertical isolation

15

LIGO-G060128-00-R

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

IP performance and improvements

- Minimize the mass of the legs
 -=> up to 80 dB attenuation
- Add counterweights to null the COP effect
 -=> beyond 80 dB attenuation

Attenuation performance 10% payload No counterweights

LIGO-G060128-00-R

•10% CW tuning precision => $x 10 \text{ perf}_{\text{LIGO-G060128-00-R}}$

Static and dynamic controls MICRO POSITIONING AND POINTING

- LVDT for local nanometer positioning memory
- Voice coil actuator dynamic controls
- Position and alignment controls < 30 mHz

Sensors and coil actuators

- produced with UHV compatible materials and procedures
 - TAMA resolution (nm/\sqrt{Hz})

Assemblying a real attenuator system

- What are we building
- How are we putting it together

Tuning the GAS filter

Leg alignment procedure: avoid cradle effect

 Legs aligned
 (cradle effect depressed) to 2.5 10⁻⁴ m/m

Installing SAS in the HAMs

30 LIGO-G060128-00-R

Installing SAS in the HAMs

31

LIGO-G060128-00-R

Installing SAS in the HAMS

- Two long rails are installed across the HAM doors extending two meter outside the chamber, resting on synchronous jacks on installation carts
- The rails are lowered to extract the optical bench from the chamber
- The optical bench slides off the HAM chamber and is lowered on a cart
- The rails descend to pick HAM-SAS from its cart
- The rails are raised to slide HAM-SAS inside the HAM ullet
- The rails are lowered to position HAM-SAS on cross tubes
- The operation is repeated to pick-up the optical bench and lower it over HAM-SAS. The optical bench can be installed with most preassembled optics

HAM-SAS primary seismic attenuation for Advanced LIGO

Seism Bus