Computer Languages

why all the fuss about C++

Kent Blackburn
Caltech /L1GO Project
June 3rd 1997

6/3/97 LIGO-G970156-00-E

The Problems

o Software costs are going up, and hardware costs are going down
(NASA/EOS estimates $100 per line of code)

o Software development time is getting longer, and maintenance
costs are getting higher, while at the same time hardware
development time is getting shorting and less costly

o Software errors are becoming more frequent as hardware errors
become almost nonexistent

o Software is developed using a rigidly structured process that is
inflexible

o Changing conditions are making software obsolete long before
delivery

o Only 25% of all software projects result in working systems

6/3/97 LIGO-G970156-00-E 2

The Cost Numbers

Table 1: Software Project Costs by Development Phase

Table 2: Cost of Correcting Software Errors

0 Source: Hughes Department of Defense Composite Software Error History

6/3/97 LIGO-G970156-00-E 3

History of Programming

o 1960's: small relatively simple applications/systems were developed with
simple languages (assembly, FORTRAN, COBOL) hy free spirited
developers using the “ creative method " resulting in “ spaghetti code "

o 1970's: method of “ structured analysis and design " based on using the
function as the building block came into being resulting in “ modular code "
that helped software developers manage the the functional organization of
software but did very little to help developers manage the data

o 1980's: software theory began to focus on the data management,
implementing the “ entity” and “ relational databases " but these were found
to be conversely inadequate at managing the function which lead to the
development of “ object oriented programming "

o Today: Object Oriented Programming views data and functions as equals,
allowing developers to manage the complexities of software applications
through a collaborative network of objects - when developers can manage

more aspects of the problem they produce more flexible and maintainable
software

6/3/97 LIGO-G970156-00-E

Language Complexity

o The advantages of object oriented programming languages extract a major
price - complexity of the language

o This leads to additional training requirements
e Introduces avenues for subtle misuses of the language

o C++isintentionally constructed as an extension to C with similar syntax
but very complex semantics

o C++ has evolved greatly as it matures to the now pending ANSI Standard

Table 3: Language Complexity of some of the more common computer languages

0 Source: AT&T Lucent Technologies

6/3/97 LIGO-G970156-00-E

OOP Language Characteristics

Object Oriented : an adjective that is used to denote that a particular activity is done in
a manner of thinking and organization that combines data and the processes which
modify that data together into a single functional unit.

Encapsulation with data hiding: The ability to distinguish an objects internal state and
behavior from its external state and behavior

m |eads to more robust sofiware

Type-extensibility: The ability to add user defined types(objects) to augment the native
types fixed by the language

m Jeads to software that more closely matches the real world

Inheritance: The ability to create new objects by importing or reusing the description
of existing objects

m Jeads to software reuse and greater maintainability

Polymorphism with dynamic binding: The ability of objects to be responsible for
function invocations

m Jeads to more extensible quality software system implemented at run time

Exception handling: The ability of a program to respond in a non fatal manor to error
conditions

m |eads to clearer, more robust and more fault tolerant programs

6/3/97 LIGO-G970156-00-E 6

Capabilities of C++

o C++is an advanced object oriented programming language supporting
multiple inheritance, aggregation, and dynamic behavior

o C++ supports operator overloading to more naturally work with user
defined types (classes)

e C++is highly portable, now having an ANSI standard (draft)

o C++ s fast, not incurring the run-time expenses of type checking and
garbage collection associated with most “pure” object oriented languages

o C++ does not require a graphical environment and is relatively inexpensive

o C++is a marriage of low level assembly language and high level object
oriented constructs, developers write code at the appropriate level to
accurately model the problem

o C++is a multi-paradigm language giving the developer a range of choices
in design and coding solutions...object oriented programming is just one
of the supported paradigms

6/3/97 LIGO-G970156-00-E

Type-Extensibility in C++

o C++ supports type extensibility through “abstract data types”

o The language implemented data types such as int, float, double, struct, etc.,
are extended by user defined types called classes

o The C++ class is build up from simple data types in concert with member
functions or “methods”, as well as user defined types

encapsulated data: attributes

mernoer functions: control benavior

h Abstract Data Type, C++ class

6/3/97 LIGO-G970156-00-E

Encapsulation in C++

o C++ encapsulates data (attributes) and functions (behavior) into packages
called objects

o The objectis an instance of a class

o Objects communicate with each other through well defined interfaces
without having to know the details of the implementation of other objects
(this is information hiding)

o Attribute and behavior hiding is controlled by the three class member
access specifiers: { public:, protected:, private: }

m Public: specifies class members that can be seen by other objects

m Protected: specifies class members that are hidden from unrelated
objects, but access is granted to derived objects

m Private: specifies class members that can’t be accessed by any objects

Special functions called “friend functions” can be granted access to
protected and private members of an object

6/3/97 LIGO-G970156-00-E

Inheritance in C++

o C++ supports inheritance through two distinct mechanisms
m composition: objects are used as data members - (object_A has an
object_B)
m inheritance: objects are derived (subclassed) from base objects -
(object_A is an object_B)
o Both mechanism motivate code reuse in an object oriented fashion
o Inheritance forms tree like hierarchical structure of class derivation

class class
o terived | /\
el class

6/3/97 LIGO-G970156-00-E

10

Polymorphism in C++

C++ achieves polymorphism through the use of virtual functions in classes
With polymorphism it is possible to design highly extensible systems

Programs are written to generically process using the base class from a
class hierarchy

Example: A virtual print member function placed in the Shape class can be
overloaded by all sub-classes so that at run-time the appropriate objects
print method is invoked using dynamic binding

C++ supports a second type of virtual function known as “pure” virtual
functions which are used to create “abstract base classes”

Abstract base classes (unlike concrete base classes) cannot be
instantiated

The sole purpose of abstract base classes is to provide appropriate base
classes used to take full advantage of polymorphism

Polymorphism and dynamic binding promotes extensible high quality code

6/3/97 LIGO-G970156-00-E

11

Templates in C++

Templates allow C++ to specify with a single code segment an entire range
of related overloaded functions or classes

An example would be a template sort function that needs to sort integers,
floats, doubles, and character strings, one template function could be
coded and the specialization to data type is handled by the compiler

Templates are superior to the #define preprocessor directive for doing this
since unlike macros, templates benefit from C++ type checking

Templates promote code reuse since the function is coded only once for all
data types

Template classes are also used by C++ to perform type parameterizing
Templates are related to inheritance as a means of deriving classes

Templates are one of the more complex aspects of C++ programming to
take full advantage of in a system due to the requirement for more detailed
design development

6/3/97 LIGO-G970156-00-E

12

Exception Handling in C++

o One of the latest additions to the C++ language is exception handling

o The extensibility of C++ can increase substantially the number of ways and
the kinds of errors that can occur in software

o Through exception handling, clearer, more robust and more fault tolerant
C++ code can be written

o C++ exception handling allows the programmer to locate error handling
code away from the main lines of the code thus improving readability and
modifiability of the code

o Exception handling is only designed to deal with “synchronous errors”
such as an attempt to divide by zero, it cannot handle asynchronous
situations such as mouse events and network message passing

o C++ exception handling using a “try - throw - catch” construct where a
block of code is tried, if an exception occurs it is thrown and then caught
following the try block

6/3/97 LIGO-G970156-00-E 13

Pitfalls iIn C++

o C++ supports multiple programming paradigms: developing hybrid
programming paradigms in a single software project undermines the
advantages of any single approach and should be strongly avoided

o Quote: “real men can program FORTRAN in any language ", thisis all to
true in C++ since it is not a “pure” object oriented language

o The more complex a language the greater the need for rules, developers
need to adopt coding standards and practices as part of a C++ project

o There is a steep start-up curve associated with a successful C++ software
project, developers must resist the temptation and pressures to shortcut
the development process so important to OOP projects

o C++ developers need to remember to keep the size and number of ADT to a
minimum in order to avoid unnecessary complexity in a particular project

o Because C++ is an extension to the C language it is important to become
familiar with object oriented ways and avoid the fall-back to C syndrome

6/3/97 LIGO-G970156-00-E 14

Recommended Reading

With the ANSI C++ standard nearing completion, focus on references based

on the draft standard and AT&T C++ version 3.0

Focus on references that teach the object oriented paradigm and C++
Avoid references that target specifics like C++ for scientists or numerical

methods in C++ as they skip over the necessary exposure to OOP

6/3/97

Some of my personal favorites have been:

“ C++ Primer™ by Stanley B. Lippman, 2nd Edition, Addison Wesley
“ C++, How to Program " by H. M. Deitel & P. J. Deitel, Prentice Hall
“ Object-Oriented Programming Using C++ " by Ira Pohl, 2nd Edition, Addison Wesley

“UML and C++, a practical guide to object-oriented development " by R. Lee & W. Tepfenhart,
Prentice Halll

“Enough Rope to Shoot Yourself in the Foot, Rules for C and C++ programming” by Allen I.
Holub, McGraw-Hill

“Ruminations on C++, a decade of programming insight and experience” by A. Koenig & B.
Moo, Addison Wesley

“Collection and Container Classes in C++" by C. Hughes & T. Hughes, Wiley

LIGO-G970156-00-E

15

Conclusion

e Yes, C++is a complicated language with a step learning
curve

o Yes, C++ can produce more cost efficient and maintainable
software

o Yes, physicists and engineers can learn to use C++ in their
software applications and systems

e Yes, you can be productive using C++ in the first 6 months
to 2 years

o Yesindeed, C++ is a very good thing!
e | nope you too will learn and penefit from the ways of OOP

6/3/97 LIGO-G970156-00-E 16

