LIGO Interferometers

LIGO PAC Meeting

D. Shoemaker

6 January 97

G970002-00-D

Organization of presentation

- fundamentals of the detection mechanism
- limitations to sensitivity
- overview of previous and ongoing R&D for the *initial* ifo
- the initial LIGO interferometer configuration and performance
- status and schedule for initial detector implementation

Basis of the detection

Assume General Relativity

- wave is transverse, like radio waves
- propagates at speed of light
- two polarizations are at 45^O
- passing GW leads to change in proper distance between points of initial separation *L*

$$\delta l \approx \left(\frac{1}{2}h(t)\right)L$$

This is the key for the detection of GWs. 2 of 30

LIGO-G970002-00-D

Characteristics of radiative process

Lowest order radiation term: quadrupole

- wavefield proportional to \ddot{Q} , second derivative of quadrupole
- or, non-spherical part of kinetic energy
- dimensional analysis leads to $h \approx \frac{G\ddot{Q}}{c^4 r}$
- $G/c^4 = 10^{-33}$ (MKS), numerically very small

One way to get BIG quadrupoles: disrupt stars

• one solar mass at the Virgo Cluster (15 Mpc, ~50 million light years) could become a supernova with some asymmetry ϵ

•
$$h \approx 10^{-20} \left(\frac{E_{\text{non-sphere, kinetic}}}{M_o c^2} \right) \left(\frac{15 \text{Mpc}}{r} \right)$$

- or, circle of pearls 1m in diameter would change by $\epsilon \cdot 10^{-20}$ m.

Coalescing Compact Binaries

Standard candle: Binary stars

- Taylor-Hulse Binary 1913+16 shows clear spin-up
- almost certainly due to GW radiation at present 8h period
- later in life (10^8 yr.) , period shortens to audio frequencies
- spends ~ 1 minute in frequency range from ~ 30 Hz-1 kHz
- our detector will target this frequency range.

for most of life, waveform well known if masses known

- allows calculation of signal amplitudes, optimal filters
- end of life (coalescence) yet to be calculated (measure first?)
- typical number: $h \approx 10^{-21}$ for 1.4 M_o, 200 Mpc, ~3 events/yr.

• since
$$h = \delta l/L$$
, expect $\delta l = 10^{-21}$ m for $L = 1$ m

Coalescing Compact Binaries

Basic principle of detection

Laser Interferometry

• basic sensing mechanism: a Michelson Interferometer

- GW strain induces differential length changes in arms
 - > proportional to arm length, up to fraction of GW wavelength
- lengths are measured using light beams and 'free masses'

Realistic interferometer not so simple

• will explore limitations to understand initial LIGO design

Principal limitations to sensitivity

Limitations in sensing the position of the test masses

- shot noise
 - > (photon momentum transfer to the test masses)
- scattered light losses and parasitic interferometric effects
- fluctuations in the optical path due to residual gas
 - \rightarrow beam tube vacuum system

Motions of the test masses

- seismic noise a good 'engineering' problem
- thermal noise a hard materials problem coupled with art
- gravity gradients probably inescapable
 - \rightarrow km-long arms to make δl large compared with motions
 - \rightarrow seismically quiet, isolated sites

...and, no less important,

Configuration and Control Issues

- acquisition of operating lengths
- closed-loop control of lengths
- closed loop control of angles

Shot noise

Required: Ability to sense the phase to 1 part in 10¹⁰

• intensity at ifo output is a function of arm length difference:

$$(P_{in}/2)(1 + \cos 2k(L_x - L_y));(L_x - L_y) = h(t)L$$

- maximum slope: $\frac{dP}{d\delta l} = \frac{2\pi}{\lambda}P_{\text{in}}$
- uncertainty in intensity due to counting statistics: $\vec{p}_{out} = \sqrt{\frac{h_{Pl}\omega}{P_{in}}}$
- can solve for equivalent strain: $h_{\text{shot}} = \frac{\delta l}{L} = \frac{1}{L} \sqrt{\frac{h_{\text{Pl}} c \lambda}{2\pi P_{\text{in}}}}$

Quantum Noise

Radiation Pressure

- quantum-limited intensity fluctuations anti-correlated in two arms
 - can be seen as the action a statistical beamsplitter
 - > better, as result of vacuum fluctuations entering 'dark port'
- photons exert a time varying force, with spectral

density
$$\tilde{f} = \sqrt{\frac{2\pi h P_{\text{in}}}{c\lambda}}$$

• results in opposite displacements of EACH of the masses:

$$\tilde{x}(f) = \frac{1}{mf^2} \sqrt{\frac{hP_{\text{in}}}{8\pi^3 c\lambda}}, \text{ or strain } h = \frac{\delta l}{l} = \frac{2\tilde{x}}{L}$$

- NOTE: scaling with $\sqrt{P_{in}}$
- scaling with the arm length L

Total readout, or quantum noise

- quadrature sum $h_q = (h_{shot}^2 + h_{rad press}^2)^{1/2}$
- NOT true for signal-recycled interferometers!
- frequency dependence according to ifo configuration, but
- always a minimum for a given frequency as a function of Power
- for simple Michelson, $P_{opt} = \pi c \lambda m f^2$; later limitation, not now

R&D: Phase Noise Research

Goal: to demonstrate required initial LIGO phase sensitivity

- test models for shot-noise, sensing system
- develop photodetector technology
- uncover laser, servo, scattered light problems/solutions

Simplified optical system to minimize position sensitivity

R&D: Phase noise research

Comparison of recycled, unrecycled cases

- high-frequency noise, 4×10^{-10} rad/ $\sqrt{\text{Hz}}$, shot noise limited
- low-frequency noise from parasitics, frequency noise....

Next phase: conversion to Nd:YAG/1064 nm

- experiment will run to ~Jan 98
- tests low-power IR laser in characterized testbed

Interferometer Configuration

Additions to simple Michelson to increase sensitivity

- addition of recycling to increase power incident on beamsplitter
- folding of arms to increase phase change per length change

both are needed, with 4km arms, to reach initial LIGO goals

Arm cavities: accumulate

R&D: Configuration Research

Table-top realizations of optical configurations, sensing

- recombined Fabry-Perot Michelson
- recycled FP MI with multiple frequency sensing
- recycled FP MI with multiple detector sensing

Modeling of linear and non-linear control regimes

- triggered by 'surprising' results above
- general methods for recycled interferometers developed
- refined to include finite light storage times, cavity coupling

Partial tests on 40m, refined tabletop experiments

- guided acquisition of 40m cavities
- recombination of 40m system

Alignment research

- modal model for small misalignments developed
- tested in a complete LIGO-configuration tabletop experiment

Reconfiguration of 40m as recycled Fabry-Perot Michelson

- significant activity in '97
- gives data directly to interferometer length control design
- allows tests of models in dynamic regime

R&D: Alignment Sensing/Control

Alignment of cavities to laser beam

- effective use of laser power
- avoid spurious effects from undesired modes
- performance requirement of $\sim 10^{-8}$ rad
- elegant model using expansion in modes of cavities

Sensing analogous to length sensing

- add spatial resolution to photodetectors
- look in near field/far field to separate translations, angles

Experimental test on table-top

model verified

• digital signal acquisition/processing/control demonstrated

Thermal Noise

Mechanical systems excited by the thermal environment

- results in physical motions of the tests masses
- total energy of $k_{\rm B}T$, leads to $\tilde{x} = \sqrt{\frac{k_{\rm B}T}{k_{\rm sping}}}$ for integrated motion
- spectrum according to Fluctuation-Dissipation theorem:

$$\tilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_{\rm B}T}{\Re(Z(f))}}$$
, $\Re(Z(f))$ the real (lossy) impedance

- e.g., damping term in an oscillator: $F_{\text{ext}} = m\ddot{x} + \Re(Z(f))\dot{x} + kx$
- usually think of viscous damping: $\Re(Z(f)) = b$, a constant
- most real materials show internal friction,
- F = -kx replaced by $F = -k(1 + i\phi(f))x$, $\phi(f)$ often constant

log frequency

LIGO-G970002-00-D

R&D: Thermal Noise research

Models, independent measurements, 40m tests

- thermal noise of substrate, pendulum significant for LIGO
 - > previously no direct experimental observations to verify models
 - > opportunity to observe in 40m by changing test masses
- thermal noise in compound test masses carefully calculated
 - > measurements on 40m in good agreement
- new monolithic masses studied separately
 - > coupling of control/sensing magnets/fins, suspension wires...
- installed in 40m; spectrum consistent with thermal noise model
- scaled thermal noise for LIGO meets initial curve

16 of 30

R&D: Suspension Research

Pendulum suspension serves several purposes

- minimizes thermal noise generated by test mass suspension
 - > high-Q pendulum
- provides seismic isolation, $\sim f^{-2}$ above resonance
- allows translation and orientation forces to be applied

Prototypes tested separately, and in, interferometers

Seismic Noise

Motion of the earth

- driven by ocean tides, wind, volcanic/seismic activity, humans
- for LIGO sites, characterized by $10^{-7}/f^2 \text{ m}/\sqrt{\text{Hz}}$
- requires e.g., roughly 10⁹ attenuation at 100 Hz

Approaches to limiting seismic noise

- careful site selection
 - > far from ocean, significant human activity, seismic activity
- careful building design
 - > low air velocities in HVAC, put refrigeration at a distance
- simple damped harmonic oscillators in series
 - > LIGO: 'stacks', using lossy Viton springs and SS masses
 - alternatively, constrained layer damped spring
- one or more low-loss pendulums for final suspension
 - > gives $1/f^2$ for each pendulum

Gravitational gradients

- direction of local gravitational pull a function of mass distribution
- time varying mass distribution indistinguishable from GW
 - seismic compression/rarefaction of earth
 - > clouds
 - > important at frequencies below 10 Hz

R&D: Seismic Isolation systems

Passive elastomer-steel 'stacks'

- damped SHOs in series
- in-vacuum: extra design constraints
- separate tests, followed by
 - interferometer tests

Initial interferometer design

Philosophy of initial design

- conservative: designs tested, many in sensitive interferometers
- minimum of extrapolation required
 - displacement, phase sensitivity demonstrated
- some systems revised from first design
 - > Argon laser, Viton springs
- leaves clear paths for advanced subsystems

Role of R&D in process

- modeling helps target important/difficult design questions
- small-scale experiments test models in some regimes
- iterative process, leading to scaled design
- in general, test in sensitive interferometer follows
- actual LIGO design then possible

Initial LIGO sensitivity

LIGO Interferometer Design Status

Subsystems breakdown

- Pre-Stabilized Laser
- Input Optics
- Core Optics Components, Support
- Suspension
- Seismic Isolation
- Length Control
- Alignment Control
- Physics Environment Monitor
- Control and Data System

Pre-stabilized laser

Laser Source

- being developed and produced by Lightwave, Inc.
- monolithic Nd:YAG oscillator, followed by amplifier; 10 W output
- first units to be delivered in Oct 97

Stabilization

- based on rich experience with Argon Ion lasers
- modifications for Nd:YAG; e.g., filter cavity (Stanford)
- development underway using available 700 mW laser
- initial prototype for test in Phase Noise Ifo., in coming months

Input Optics

Under development in collaboration with Univ. Florida

• helped by clean interfaces, frequent visits, good communication

Principal components

- phase modulation system (multiple sidebands required)
- 3-mirror Fabry-Perot suspended mode cleaner
- matching telescope to main optics; reflective

Core Optics

'Pathfinder' process

- exploring/developing polishing, metrology, coating technologies
- significant progress on all fronts

Substrates: fused quartz, 25cm x 10 cm

- Heraeus low-OH material where absorption critical
- Corning for other applications

Polishing

- Three firms qualified for LIGO polishing
- 1 nm surface figure over 10cm required, and possible!

Coating

- REO and LIGO cooperating in measurement, characterization
- converging on processes to maintain required phase flatness

Metrology

- NIST is the independent contractor for Pathfinder
- comparisons with vendor metrology; probably the limiting technology

Core Optics Support

• baffling, in-vacuum relay mirrors, etc.

Suspensions

Two basic flavors:

- Small Optic Suspensions: Input Optics components
- Large Optic Suspensions: Core Optics

Prototypes in construction/test

- challenges in fiber attachment (Q), initial balancing
- also in control electronics: severe dynamic range requirements
- tests in 40m interferometer for control, noise performance

Seismic Isolation

Design contracted to Hytec, Inc.

- requirements developed by LIGO
- design makes incremental changes in initial design
- principal change in springs: Constrained Layer Damping

Requirements in control, GW band

- resonances create servo-control challenges, but...
- attenuation in signal band crucial

Preliminary design well advanced

• actuators for drift, tidal, microseismic peak also in development

Length Sensing/Control

Phase modulation key to obtaining signals

- Pound-Drever-Hall reflection locking techniques
- Asymmetry in Michelson to give differential signals

Designs tightly coupled to work on 40m, Phase Noise Ifo.

- acquisition and operation are both challenges
- modeling crucial, due to scaling required from lab to LIGO
- recycling experiment on 40m will give system test

Largely digital servoloop to be used

• transmission of signals over 4km eased (dynamic range!)

Alignment Sensing/Control

Model and prototypes tested on table-top system

- beautiful confirmation of Modal Model
- digital acquisition/control demonstrated
- wavefront sensor head, demodulation system shaken down

Many aspects to complete design

• initial alignment; pre-operational; operational

Physics Environment Monitor

All probable paths from environment to interferometer

- seismic (low 'drift' frequencies to GW band)
- acoustic
- electromagnetic: lightening, RFI, magnetic fields
- temperature, etc.

Characterization of transfer functions

• stimulus-response

System separate from interferometer

- to be used for veto, correlation, regressions
- principally commercial instruments

Early to the sites

- portable carts to enable measurements as buildings go up
- measure changes in the environment
- early data on correlations between sites

Control and Data System

Backbone of the interferometer

- electronics standards and design
- communications between subsystems
- all centralized control, monitor, operator consoles
- timing
- software up to the data analysis

Data Acquisition

- order of 5 MB/sec per interferometer total data rate
- data assembled into frames, short and long term storage

On-line Diagnostics

• interferometer console to allow quick-look, scripts

Prototyping and design well advanced

- much R&D now using CDS electronics
- several subsystems tests (laser)
- data acquisition/frame builder in test

Plans for '97 and beyond

R&D for initial interferometer: ends in '97

- all designs finished, fabrication underway
- 40m recycling
 - length control acquisition
 - > length control operational mode
 - > tests of CDS electronics, data acquisition, etc.
- Phase noise measurements
 - characterization of Nd:YAG laser
 - > guidance to Pre-Stabilized Laser design
 - experience with infra-red optics, components
- Suspension tests in 40m
 - control and mechanical stability
 - > internally-generated noise mechanisms
 - installation practice
- Thermal noise research
 - > measurements of Q for suspended test mass optics
- Temporal, spatial modeling
 - to support design activities; integration of models

Initial interferometer schedule

- overlapping design/fabrication/installation schedule
- both interferometers installed by mid-1999

LIGO-G970002-00-D