Science & Integration Meeting

- Information Management
 - >> Electronic submission to DCC

Althouse

- LIGO Data Analysis
 - >> Report from the MIT Data Analysis Meeting

Weiss

>> Prototyping data analysis at CACR

Blackburn

>>> Forum to review baseline approach proposed to NSF

Lazzarini

CDS DAQ Design - May 1996

DAQS Interfaces

On line analysis & diagnostics are closely related

- CDS DAQ provides for on-line short term storage (ref.: CDS DAQ CDR, DRD)
 - >> 63GB (commissioning) -> 400 GB (later)
 - >> 8 hr complete data frames (CDF); 10 days limited data frames (LDF)
 - >> 25MB/s I/O
- Data analysis system will use same resources and augment them as needed

On-line analysis

- >> Diagnostics ensure instrumental sensitivity at all times
 - performance metrics -- Gaussian noise
 - h_{rms}[t]
 - statistics of h in limited frequency bands
 - performance metrics non-Gaussian noise
 - templates (limited range: m_{NS} < m_{Sun})
 - wire resonances -- $\delta A[t]$ $\delta \phi [t]$ phasor diagram
 - PEM (vetos)
 - calibrations lines/broadband h[t] extraction, if possible
 - "quick-look" analyses real time

On-line analysis

>> Astrophysics

- detection of transient phenomena for which coincident operation with other (highly) directional instruments is feasible
- Supernovae
 - limited to Milky Way -- rare (.025/yr)
 - v detectors (omnidirectional) can be done with post processing correlation
 - γ /visible light curves want to track curve from onset of SN explosion
 - LIGO could provide trigger;
 - 2 sites give cone -- insufficient information;
 - telescopes slewed to position;
 - requires site-to-site communication correlation in real time
 - maximum few hour latency allowed TBD
 - Supernova signature is of short duration
 - No templates -- wavelet characterization; datastream crosscorrelation

On-line analysis

- >> Astrophysics
 - NS/NS coalescence
 - LIGO detection would not be able to affect other directional detectors
 - End point may produce fast/short burst of EM radiation, but duration does not allow slewing of directional instruments
 - Template analysis has built-in latency (collection time)
 - EM detection ($_{\gamma}$ burst) can always be correlated off-line since LIGO is omnidirectional
 - On-line templates will be needed to characterize non-Gaussian noise performance
 - >> Delaying data reduction exacerbates problem later!

5 of 10

Off-line analysis -- must keep up with data stream

- >> "Production" of data -- how to deal with 500 TB/yr problem
 - consolidation/refinement of data for permanent archive
 - data product generation -> h[t] for scientific analysis
 - "quick-look": 1 day -> 1 month
 - "Data QA Board"
- >> Scientific analysis
 - multiple analyses possible simultaneously
 - substantial resources required
 - 10 50 GFLOPS
 - 500+ GB disk farm(s) for tape dumps
 - SCC-class systems
 - computational resources resident with archive
 - network (wide area) access
 - some work may require additional SCC resources (SDSC, NCSA, NPAC, etc.)

Data "QA" Board

- >> regular (frequent) meetings to review detector performance and statistics of data from previous period
 - % locked/up time
 - h_{rms}[t] statistics
 - event lists (template filters)
- >> responsibility is to produce triage on archived data
 - what to keep
 - what to recycle (keep limited data frames -- GW channel) -annouce to collaborations: if someone wants 100% data, he/ she can retrieve it, store it, etc.

Networks

- >> Hanford-Livingston link permits real-time crosscorrelations among instruments
- Caltech-MIT link provides high speed link to data archives; data tapes to be archived at university.
- >> Site-University links provides site scientific staff access to archived data
- >> University gateways provide broader access to database
- >> Data tapes transported to University repository

Data Analysis for Initial LIGO

On-line Processing Computing Resources & Distribution

The National Science Foundation Very-High-Speed Backbone Network Service Logical Network Map

The second secon

ESnet BACKBONE Mid 1996

31 mm 486

vBNS MBONE MAP

Software

- >> Layered, standardized, stylized, documented (users' manuals,etc)
- >> I/O libraries to access archived frames
- >> concatenation of frames
- >> extraction of specific channels
- >> cross-correlation among channels
- >> diagnostic software time and frequency domain
- >> analysis software filtering algorithms
- >> 2D/3D display & visualization
 - AVS (=GRID) or similar varients
 - IBM's DATA EXPLORER
 - SGI IRIX EXPLORER

What needs to be done?

- >> by 5/97:
 - Data Analysis System Requirements
 - Hardware location/storage/performance
 - Communications WAN requirements; bandwidth; up time; connectivity
 - Software functional requirements/specifications/standards
 - Conceptual Design
 - Hardware architecture
 - WAN architecture
 - Software module specification; user environment; implementation approach

Planned Activities Timeline for Development

Milestone or Event	Date	Communications	Hardware	Software
Begin Coincidence Operations	7/00	Common		
On-Line System Available	1/00	Common		
	3/99-12/99	eements	Procurement & Integration	rifica
	11/98	Implements	Specifications	lopment Ve
System FDR	11/98		Design &	cifications
System PDR	11/97	A A A	Prototyping	Design &
System DRR	5/97	₽₩		Prototyping

Data Analysis Requirements

Science & Computational Requirements

Initial LIGO Sources and Estimated Analysis Capability Requirements

Γ		Initial LIGO	Data Analysis Requirements		
	Sources	Performance Estimate	CPU .	Storage	Comments
	Supernovae	$\Re_0 \sim 2 - 3$ yr @ 15 Mpc If sufficiently asymmetric	Minimal for straightforward	Minimal Need PEM/houskeep-	 On-line analysis desirable for correlation with other astrophysics: Electroweak
Burst Signats $\Delta T < 1s$	BH/BH Collisions	$\Re_0 \sim 1/ \text{ yr}(?) @ 500 \text{ Mpc};$ $M_{BH} \sim 30 - 200 M_{SUN}$	correlation; if optimal filters are discovered, problem may increase in complexity.	ing data for veto	 visible/radio/γ (HETE. GRO) V (Super-K/SNO) Gravity VIRGO/GEO Resonant bars Waveforms unknown
	NS/NS Inspirals	$\Re_0 - 3$ / yr @ 23 Mpc;	· · · · · · · · · · · · · · · · · · ·	Templates/Data	 2x/3x IFO correlation Off-line analysis to enhance SNR On-line analysis for MNS>MSUN can be
s($\Delta T \sim 4 \times 60 \text{ s}$ $M_{NS} \sim M_{SUN}$ $\Delta T \sim 4 \times 500 \text{ s}$ $M_{NS} \sim 0.3 M_{SUN}$	~ 2 GFLOPS ~ 50 GFLOPS	~20 GB /~1 GB ~500 GB /~10 GB	done; appears feasible down to ~ 0.3 M _{SUN} 2x/3x correlations feasible depending on SNR
Chirped Waveform $10s < \Delta T < 1000s$	BH/BH Inspirals	$\Re_0 \sim 1/\text{ yr } \approx 150 \text{ Mpc};$ $\Delta T \sim 4 \times 10 \text{ s } M_{NS} \sim 10 M_{SUN};$	~ 2 GFLOPS	~20 GB /~1 GB	 Coalescence event may generate correlated (EW) signals as above. PEM/housekeeping needed for vetoing Template matching (Wiener filtering) or wavelet analysis in f-t domain. Off-line analysis to enhance SNR

LGO

Data Analysis Requirements

Science & Computational Requirements

Initial LIGO Sources and Estimated Analysis Capability Requirements

Revieu	Saurasa	Initial LIGO	Data Analysis Requirements		
NS/NS	Sources Performance Estimate		CPU	Storage	Comments
Periodic 1.72		$\varepsilon = 3 \times 10^{-5} ; r=10 \text{kpc} ; P=1 \text{ms}$ $T_{\text{int}} = 10^{6} \text{s}$ $SNR \approx 5$	Directed searches (e.g., galactic center, known pulsars) require minimal resources All-sky searches require tens of TFLOPS beyond anticipated capabilities	10 GB for 10 ⁶ s (GW waveform)	 Off-line analysis Detection less sensitive to non-Gaussian noise; more sensitive to calibration drifts&drop-outs Detection techniques as for pulsars narrow line sources with modulated frequency. Correlations among interferometers may be performed (if needed) after detection. All-sky search requires decomposition of 4π sr into >10¹⁰ pixels, each region requiring a different spectral transformation of same dataset.
Broadband Signals	$\Omega \equiv \frac{\Omega_{\rm g}}{\Omega_0}$	$\Omega \ge 3 \times 10^{-6}$ $\Delta f, f \approx 100 \text{Hz}$ $T_{\text{int}} = 10^{7} \text{sec}$	Minimal requirements analysis maybe done on single workstations		 Off-line analysis Requires multiple interferometers to be correlated; may use PEM to imprive SNR.

CSCC HARDWARE

FEATURE	DELTA	TREX	RAPTOR	JPL CRAY
MODEL	PROTOTYPE	XPS L38	XPS A4	T3D
GFLOPS	30.7	38.4	4.3	38.4
NODES, PE's PER NODE	513, 1 PE	512, 1 PE & 1 Comms Procsr.	57, 1 PE & 1 Comms Procsr.	128, 2PE's
CPU	i860 XR	i860 XP	i860 XP	DEC 2:1064
SPEED	40 MHZ	50 MHZ	50 MHZ	150 MHZ
MFLOPS/CPU	60	75	75	150
MB/NODE	16	32	32	64
TOTAL GB	8.2	16.4	1.8	16.4
DISKS IN GB's	93 (RAID0)	67.2 (RAID3)	14.4 (RAID3)	103
TOPOLOGY	2D (16X36)	2D (16X36)	2D (16X4)	3D TORUS