THE FMI ALIGNMENT EXPERIMENT

DANIEL SIGG, NERGIS MAVALVALA

December 12, 1996

Effects of misalignment

- O Degradation of GW sensitivity $\Rightarrow \theta_i \sim 10^{-8}$ rad
- O Misalignment-beam jitter coupling $\Leftrightarrow \theta_i \sim 10^{-8}$ rad

Need for wavefront sensing

- \bigcirc drifts of the local frame $\Rightarrow \theta_i \sim 10^{-7}$ rad
- O interferometric sensing using existing modulated light

Goals of the FMI experiment

- O Establish and verify a wavefront sensing scheme for LIGO
- O Validate the modal model
- O Develop and characterize the wavefront sensing hardware

PRINCIPLES OF WAVEFRONT SENSING

Angular misalignments excite higher-order transverse modes

\Box TEM₁₀ amplitude \propto Misalignment angle

□ Wavefront sensor measures TEM₁₀ amplitude

Detection Scheme

 \bigcirc Length sensor signal: beating of carrier TEM₀₀ field against sideband TEM₀₀ field

○ Wavefront sensor signal: Beating of carrier TEM₀₀ field against sideband TEM₁₀ field □ spatial map of this TEM₁₀ mode at modulation frequency □ segmented photodetector

O Frequency shifted subcarrier locking technique

DETECTION SCHEME

Port	1	2	3	4	5	6
LS	l_C		l_D	L _D	L _C	L _C
WFS	RM	ITM _C	ITM _D	ETM _D	ETM _C	ETM _C

WAVEFRONT SENSOR MEASUREMENT

Data

•

WAVEFRONT SENSOR MATRIX MEASUREMENT

$$V_{ij}^{ADC}(t,\eta,\Theta) = \varepsilon J_0(\Gamma_i) J_1(\Gamma_i) Z_i P_i$$

 $A_{ij}\Theta_j\cos(\eta-\eta_{ij})\cos(\omega_m t+\phi_{ij})$

A_{ij} alignment sensitivity matrix element V_{ij} ij-th wavefront sensor signal 3 quantum efficiency of detector Z_i gain of the detector P_i power on the detector Θ_j misalignment angle for *i*-th dof Guoy phase η $η_{ij}, φ_{ij}$ ω_m, Γ intrinsic Guoy and RF phases modulation frequency and depth

RESULTS

□ Alignment sensitivity matrix

	pha	ases	angular degrees of freedom				
port	rf	Guoy	RM	ITM1	ITM2	ETM1	ETM2
① refl, SC NR	I	152°	-2.59	0.34	0.43	0	0
			-3.00	0.30	0.39	0	0
2 refl, SC NR	Ι	92°	-1.42	0.76	0.78	0	0
			-1.75	0.57	0.63	0	0
③ dark, SC	Q	168°	-0.67	-2.77	2.98	0	0
			0.22	-2.23	-2.45	0	0
(4) dark, CR	Q	80°	-1.01	14.8	-12.1	15.5	-12.6
			-0.61	9.49	-9.92	11.3	-9.13
5 refl, CR	Ι	87°	-2.05	3.65	3.67	3.74	3.77
			-2.70	2.74	2.99	2.76	2.99
6 rec, CR	I	140°	-20.7	32.4	32.8	30.4	30.8
			-20.9	18.4	22.4	17.6	19.8

matrix elements predicted by modal model

measured matrix elements

ERROR PROPAGATION

x _n	3	P _{IN}	Θ_{j}	f _i
σ_{x_n}/x_n	±0.05	0.15±0.05	±0.10	±0.02

x _n	Γ ₅₈	Γ ₃₉	Γ ₃₂	Z ₅₈	Z ₃₉	Z ₃₂
σ_{x_n}/x_n	±0.03	±0.07	±0.03	±0.10	±0.05	±0.05

x _n	η_{ij}	l _{ij}		
$\partial_A \sigma_{x_n}$	±0.005 to ±0.22	±0.05 to ±0.25		
$\overline{\partial x_n} \overline{A}$	diagonal off-diagonal	different ports		

MATRIX ELEMENTS

□Non-zero matrix elements

CONCLUSIONS

- □ All 10 angular dofs under closed loop control
 ⇒ wavefront sensing works
- Measurement of matrix elements I model works
- Design tool for LIGO

