Detector Subsystems Requirements

DHS objectives for review:

- make the DSR Document the reference for the interferometer design
 - > top-level reference for all subsystem designs
 - > (much lower-level detail still to be held in DRDs)
 - all changes to require a formal action
- critical review of content of DSRD, as per charge
- bring several unresolved issues to light
- show work to be done
- · outline other Ifo Systems activities

Organization of presentation:

- · follow the DSRD rather closely
 - facilitates comments from text (please interrupt)
- · follow with other systems activities (Dennis Coyne)

Intended Scope of complete document

How detector subsystems deliver SRD performance

- interpretation of the SRD
- translation into subsystems requirements for gaussian noise
- for non-gaussian noise
- for availability

Definition and interfaces of subsystems

- · top-level conceptual design
- · what is in/out of each subsystem
- detailed interfaces

Performance models

· gaussian noise model

Materials handling, reliability, and testing

- allowed materials
- cleaning methods for in-vacuum use
- contamination issues

Standards and processes

- design and construction
- documentation
- · transportability, preparation for delivery
- quality assurance

LIGO Project

1 of 27

LIGO-6960239-00-0

LIGO Project

LIGO-0960239-00-D

Top-level Conceptual Design

Objectives:

- · give a skeleton on which the requirements can be hung
- · give key interface frontiers

Applicable Documents

This Detector Subsystems Requirements Document:

- based on the DRDs and other Detector Group work
- · once all conflicts with existing documents resolved,
- · takes precedence over all other Detector Requirements Documents
- any changes in design require a formal process

Other documents cited

· objective: to give a complete bibliography of significant documents

Assumptions and Dependencies

2 of 27

Vacuum Equipment

- 1 m clear aperture
- · all aperture available for these interferometers

Impact of some upgrades to be considered in subsystem design

- · increased input laser power, by about a factor of 10
- alternative interferometer readout configurations
- replacement of core optics components with higher-quality optical components
- · changes in substrate material for lower thermal noise
- · improvement of passive and/or active seismic isolation
- improvement of the suspension system (e.g., a double pendulum; electrostatic actuation)

LIGO Project

Environment

Seismic environment

- stationary noise as characterized for the bare buildings
- quotation of requirements for building, VE performance
- non-stationary noise needs characterization
- narrow-band disturbances as required by SRD

Acoustic environment

- · steady state noise as required by CC documents
- · additional noise from our (CDS) equipment estimated
- non-stationary noise, rain/wind, little known

Environment

Electromagnetic environment

- · measurements of the ambient man-made fields exist
- guidelines exist (EMI Control Plan)
- · no real requirements for our emission, nor test procedures required

Vacuum

- requirements for BT are at a level of ~1/2 SRD
- expectation (from QT tests) are at ~1/20 SRD
- no real data on bursts, but models indicate clear signature

LIGO Project

5 of 27

LIGO-G960239-00-D

LIGO Project

6 of 27

LIGO-G960239-00-D

Requirements: The SRD

Distinctions between stationary gaussian noise types

- 'fundamental' noise
 - > those that determine the SRD, and present challenges
 - > shot, suspension thermal, stack seismic
- 'technical' noise
 - > electronics, phase noise in excess of shot
 - > thermal or seismic entering through other paths

Requirements for Fundamental Noise

SRD sensitivity curve

- interpreted as an envelope not to be exceeded
- · can make some limited choices as to composition of noise terms
 - > thermal noise region is $1/f^2$, not appropriate for internal damping
 - > arm cavity knee frequencies not prescribed
 - > actual seismic noise source not a simple power law
- no prescription for Narrow-band exceptions
 - > intend to develop both RMS (controller) and
 - > peak height/width criteria

Approach for fundamental noise sources

- · express SRD as a sum of curves in seismic, thermal, shot regions
- for each region, allocate contributions
 - > use RES noise tree as one cross check
 - > use subsystem DRDs/authors as another
- often, no real choice (technical limit; e.g., thermal noise)
- assume least-squares addition of independent noises

LIGO-G960239-00-D

Noise model

Initial LIGO Noise Sources

Should reflect current design

- uses noise models from design effort (in general)
- uses parameters based on experimental data when possible
- at present, includes primarily 'fundamental' sources
- (seismic curve is 'double viton'—not a present design)

LIGO Project

Noise model

Should reflect current design

- · uses noise models from design effort (in general)
- · uses parameters based on experimental data when possible
- at present, includes primarily 'fundamental' sources
- (seismic curve is 'double viton'-not a present design)

Seismic noise

SRD requirement:

$$h_{\text{seismuc}} = h_{0s} \left(\frac{30 \text{ Hz}}{f}\right)^{14}, h_{0s} = 3.3 \times 10^{-21} \frac{1}{\sqrt{\text{Hz}}}, 20 < f < 60$$

Drift

- · require performance equal to Viton stack, with 20 days of settling time
- · determines bellows design, sizing of support beam
- · could reconsider if we can commit to non-Viton spring

Resonances

- solid-body motions, 1-20 Hz
- determines servocontrol design for LSC, ASC
- require Q < 70, consistent with Hytec designs
- · higher frequency resonances not to exceed RMS values
- · also, not to exceed TBD narrow-band requirements

GW band stack isolation

- · requirement is to meet SRD, given suspension XF
- · Viton stack is insufficient; Hytec designs meet requirement

GW band suspension isolation

- · many constraints on design (violin, vertical, stress, horizontal)
- allow design priority, thus $f_p = 0.74$ Hz, $f_y = 13$ Hz

LIGO Project

10 of 27

UGO-G960239-00-D

Thermal Noise

9 of 27

SRD Requirement:

LIGO Project

- $h_{\text{thermal}} = h_0 (100/f)^2, h_0 = 3.8 \times 10^{-23} 1/\sqrt{\text{Hz}}$, 30 < f < 160 Hz
- · slope does not match that anticipated for any one thermal noise source
- best effort for all aspects of thermal noise; drives other designs, in fact

Core Optics

• 'require' <2×10⁻⁷ loss per mode (as extrapolated from measurements)

Suspensions: internal modes of TMs

- require $<8 \times 10^{-20} (100 \text{ Hz}/f)^{1/2} \text{ m}/\sqrt{\text{Hz}}$ net contribution
- · puts constraints on magnets, attachments, suspension techniques

Suspensions: pendulum mode

- require $1 \times 10^{-19} (100 \text{ Hz}/f)^{5/2} \text{ m}/\sqrt{\text{Hz}}$ net contribution, 30 < f < 160 Hz
- also, violin resonances $\Delta f/f_0 < 10^{-5}$ and less than 2% variation in freq.
- · puts constraints on wire, wire tension, clamping techniques

Shot noise

SRD Requirement:

$$h_{\text{shot}} = h_0 \sqrt{1 + \left(\frac{f}{f_0}\right)^2}, h_0 = 1.13 \times 10^{-23} \frac{1}{\sqrt{\text{Hz}}}, f_0 = 90 \text{ Hz}, 130 < f < 10^4 \text{ Hz}$$

• pole frequency not explicit in SRD, choose 90 Hz

Degradation factor '(0.005)'

- · designed to give tolerances to parameters affecting shot noise
- distinct from (but equal degradation from) additional noises @ 1/10 SRD

Calibration

- · precision to come from System Engineering
- · LSC to provide practical constraints

LIGO-G960239-00-D

Shot noise

Useful light power

- · 6 W required coupled into Recycling Cavity (allows SRD to be realized)
- distributed as follows; power is for carrier and GW-sensing SB:3

Property	Requirement		
PSL output power	8.5 W		
IOO optical efficiency	0.75		
IOO coupling efficiency to COC	0.95		
Coupling from COC to ASC/LSC (COS)	0.99		
ASC/LSC Symmetric port splitter	0.05/0.95		
ASC/LSC Antisymmetric port splitter	0.01/0.99		
GW antisymmetric port photodiode quantum efficiency	0.8		

Notes on Power:

- · IOO coupling to ifo will be expressed in allowed higher order modes
- these values to be maintained for optics tolerances (initial, thermal focussing)
- output beams (COS) to be flat to λ/10

Shot noise

Configuration

LIGO Project

Property	Requirement			
Recycling cavity optical length (obviced length shorter due to substrate index)	9.38 m (4km)			
Mode cleaner optical length	12.55 m (4km)			
	14 75 m (2km)			
Schnupp optical length asymmetry (4 km)	$l_1 + l_2 = 31$ cm nominal; -1 to +50 cm range			
GW readout modulation frequency (4 km)	24.0 MHz			
GW readout modulation depth (4 km) at recycling cavity input	$\Gamma = 0.45$ nominal; range TBD $0 < \Gamma < 10$			
ASC non-resonant sideband frequency	TBD			
ASC non-resonant sideband modulation depth	TBD			

Deviations from optimal lengths

- here, to maintain shot noise (power circulating); '(0.005)'
- · as technical noise source (e.g., coupling to frequency noise) elsewhere
- sum of the Arm lengths $L_{\pm} < 2.5 \times 10^{-12}$ m RMS
- sum of the two inside ifo arms $l_{\perp} < 1 \times 10^{-10}$ m RMS

LIGO Project

13 of 27

LIGO-G960239-00-D

14 of 27

L1GO-G960239-00-D

Shot noise

Angular alignment of core optics

- COC shall be held within 1×10⁻⁸ rad rms of the optimal alignment
- · reflects power coupling efficiency
- also, determines coupling to beam jitter (tech noise)
 - coupling to beam jitter means actual value needed
 - in fact, varying sensitivity per mirror; criterion should be '(0.005)'

Centering of beams

- TMs: such that <0.1ppm additional loss (tech reg dominates)
- · BS, RC: such that <100ppm additional loss (trivial)

Optics Requirements

- · trades of thermal noise, fabrication ease, diffraction loss
- · not truly optimized, but mostly slow functions, broad maxima
- optical efficiency, contrast quality, frequency response principal drivers
- · 2km optics not yet called out, but now possible
- · overcoupling of recycling cavity active question
 - determines s/n for reflected signals
 - > sensitive to optics degradation

Shot noise

Property	Requirement				
Optic Sizes	TM, RM: 25 cm dia., 10 cm thick				
	BS: 25 cm dia., 4 cm thick				
Coated surface	24 cm dia.				
Beam Sizes	ITM: 3.6343 cm w_0 , ETM: 4.5655 w_0 ,				
	BS: 3.6359 w ₀ , RM: 3.6377 w ₀				
Radii of Curvature	ITM: 14571 m; -0.07< ΔR _{ITM} /R ₀ <0.01				
(tolerances to main-	ETM: 7400.0 m; ΔR/R ₀ of 0.03				
strain sensitivity to	BS flat/flat, tolerance TBD				
0.95 nominal)	RM: 9998.33m; -0 01<ΔR _{RM} /R ₀ < 0.05				
Surface figure	equivalent to '1.5 × Calflat'				
Mirror transmissions	ITM: 0.030±0.00015				
	ETM: 10 <t<20 ppm<="" td=""></t<20>				
	BS: 0.50±0.01 TBD				
	RM Overcoupled, 0.1 E field reflected				
AR Coatings:	ITM, RM: 600±300 ppm				
	BS, ETM: 200±100 ppm				
Mirror losses:	50 ppm scatter+absorption				
Substrate index	1.44963 (Heraeus), 1.44968 (Corning)				
Substrate OPD for BS. ITM, RM	5×10^{-7} p-v. $\lambda = 632.8$ nm, cntr 150 mm				
	2.5×10^{-6} p-v, $\lambda = 632.8$ nm, cntr 225 mm				
Substrate absorption	<2 ppm/cm				
Substrate scatter	<5 ppm/cm				

LIGO-G960239-00-D

LIGO Project

Technical gaussian noise sources

Allocation of 1/10 SRD (called '10%' in DSR)

- · addition in quadrature, so each makes s/n 1.005 worse
- · different frequency regimes
 - thermal (< 150 Hz), or with a slope
 - > shot (>150 Hz), or flat/rising
- order of 10 of each, leading to ~5-10% degradation above SRD

Mechanical technical noise

Thermal noise

- stack final stages (1/10)
- suspension pitch and yaw (1/10)
 - > enters through mis-centering of beams on optics
 - > thus, both thermal noise requirement 5x10⁻¹⁸ x (100 Hz/f)^{5/2} (red) (fiz)
 - > and centering: within 1.0 mm of center of rotation of test masses

SEI operational stack actuator (1/10)

- 1/10 SRD f > 20 Hz
- 1/10 ambient seismic environment f < 20 Hz

SEI internal noise generation (1/10)

creaking - groaning (non-stationary?)

SUS

LIGO Project

- · coil drivers, longitudinal motion (1/10)
- displacement to angle coupling (1/10)
 - > ASC noise input< 2.5×10⁻¹⁸(100/f)^{2.5} rad/ √Hz, 40 < f < 150 Hz;
- $1 \times 10^{-18} \text{ rad} / \sqrt{\text{Hz}}, f > 150 \text{ Hz}$

> SUS controller orthogonality 10⁻²

- angle to displacement: intrinsic coupling in suspension 10⁻²
 - leads to gain requirements for ASC, no net noise increase

LIGO Project

17 of 27

LIGO-G960239-00-D

18 of 27

LIGO-G960239-00-D

Mechanical technical noise

Radiometer effect (1/10)

- · laser intensity noise requirement very tight (see below), so:
- · calculated to be negligible for any reasonable BS match

SUS response to magnetic fields (1/10)

- · easy to require, hard to know if we will achieve
- requires $B < 10^{-12}$ T/($\sqrt{\text{Hz}}$), or $A < 50\mu$ A/ $\sqrt{\text{Hz}}$ at 1 m

SUS response to electrostatic forces (1/10)

· easy to require, hard to know if we will achieve

Excess PhaseSensing Technical Noise

Light intensity fluctuations (1/10)

- LSC: differential length requirements
 - > $L_1 L_2 < 1 \times 10^{-12}$ m RMS
 - > $l_1 l_2 < 1.3 \times 10^{-10}$ m RMS
- · PSL: responsible for entire intensity servocontrol, so
- at input to the IOO: $\delta I(f)/I < 10^{-6} 1/\sqrt{\text{Hz}}$, 40 < f < 10000
- at input to the COC: $\delta I(f)/I < 10^{-8} I/\sqrt{Hz}$
- · IOO: responsible to deliver a sample of light to PSL

Light frequency fluctuations (1/10)

- COC: arm storage times to be matched to $(\tau_1 \tau_2)/\tau_{ave} < 0.01$
- · PSL: frequency sensing system to have
 - > $\delta v(f) < 10^{-1} \text{ Hz} / \sqrt{\text{Hz}}$ at 100 Hz, falling at f^{-1} to 1 kHz
- rising no faster than f^{-2.5} f < 100 Hz</p>
- IOO: frequency sensing system to have
 - > 1×10^{-4} Hz/ $\sqrt{\text{Hz}}$ at 100 Hz with $f^{-0.5}$ above 100 Hz
 - > $f^{-2.5}$ frequency dependence below 100 Hz
 - > limited by thermal noise in MC mirrors/suspension

Excess Sensing Technical Noise

Light beam geometry fluctuations (1/10)

- ASC: requirement set above to meet SRD shot noise requirement
- IOO: couples with the RMS misalignment, giving requirements of
 - > $\alpha(f > 150 \text{ Hz}) = 3 \times 10^{-14} (\text{rad/Hz}^{1/2})$ and may rise as $1/f^2$, (X < f < 150)

x(f>150 Hz) = 1×10⁻¹⁰ (m/Hz^{1/2}) and may rise as 1/f², (X < f < 150)
 PSL:

- > $\alpha(f > 150 \text{ Hz}) = 3 \times 10^{-11} (\text{rad/Hz}^{1/2})$ and may rise as $1/f^2$, (X < f < 150)
- > $x(f > 150 \text{ Hz}) = 1 \times 10^{-7} (\text{m/Hz}^{1/2})$ and may rise as $1/f^2$, (X < f < 150)

 do not have much data on YAG lasers, but believe to be workable using a passive filter cavity

RF modulation source (1/10)

- · couples through the modulation system, and asymmetries
- AM noise <-160 dBc / Hz^{1/2} at f >100Hz
- Phase noise < -70 dBc / Hz^{1/2} at 100 Hz, <-120 dBc / Hz^{1/2} at 10 kHz

LSC control system

- L control system, including photodetector noise, linearity (1/10)
- L₊, l₊, l₋ control systems: shot noise and other effects (1/10)

ASC control system

all sources, not considered as fundamental contributors (1/10)

LIGO Project

21 of 27

Excess Sensing Technical Noise

Parasitic interferometers (1/10)

- accidental interferometers due to scatter within Rayleigh angle
 direct contributions due to motion (or phase jitter) in GW band
 - > upconversion due to reflectors with large velocities $\dot{x} < 40\,Hz \cdot \lambda/4\pi$
- SUS: constraints on the damping of the BS and RM ('reference masses')
- COC: requirement that wedges be sufficient to avoid accidental ifos
- IOO: requirement of <10⁻⁸ in power as viewed from the COC,
 - > and $\dot{x} < 40$ Hz $\cdot \lambda/4\pi$ (Faraday...)
- PSL: relative velocities of all components of x < 40Hz $\cdot \lambda/4\pi$
- may involve active isolation of the PSL table and/or servos
 needs work

Scattered light (1/10)

- accidental interferometers outside of Rayleigh angle
- · COC: principal source;
- substrate scatter <5ppm/cm; superpolished substrates
- COS
- SUS
- 100
- PSL
- · LSC: photodiode uniformity

LIGO Project

LIGO-G960239-00-D

Excess Sensing Technical Noise

Mirror Heating

- · impact on performance during operations (availability later)
- COC: BS shall split evenly to better than 49.5/50.5
 - > bulk and initial surface absorption assumed symmetric
 - imbalance in power between arms causes defocussing
 - > should be in fundamental sources!

Availability

22 of 27

SRD Requirement:

- · 40 hours continuous operation of each individual interferometer
- annually integrated availability of 90%
- short loss of lock allowed within this window

Detector requires:

- all subsystems designs to be capable of >40 hours continuous operation without loss of lock (even for short times)
 requires actuators to have >24 h dynamic range
 - > requires astuators to nave >24 in dynamic rang
- SUS: actuator displacement range of $\geq \pm 20 \mu m$
- SEI: fine actuator displacement resolution of $\leq 2\mu m$, pole at 0.15 Hz
- PSL: no mode hops >40 hours
- LSC re-acquisition time: 180 sec (after no more than 300 sec unlocked)
- IOO re-acquisition time: 20 sec
- PSL re-acquisition time: TBD
- needed: some requirements on reliability to be consistent with availability

LIGO-G960239-00-D

Commissioning

Staged approach to final configuration

- · detector subsystems must allow partial implementations of the optics for initial operation (and later troubleshooting)
- needs work with Systems Integration

Initial Alignment

- · PSL: modulation requirements
 - > chopping at 50% intensity, 2 Hz, slew time of 0.05 sec
 - > calibrated attenuator, full power to 10 mW, factors of 3 in power with servos in operation (although at reduced performance TBD)
- · ASC: will provide means to place components in angle and transverse to beam
- · Detector Systems: will provide means to place components along optical axis

Timing accuracy

- The strain data acquired from the detector shall have an absolute time-stamp accuracy of less than 10 μ sec TBD as implemented through the CDS Data Acquisition system
- · maybe this should be SystemsIntegration

Cleanliness

Allowed in-vacuum materials

as specified in LIGO-E960022-02-E, Vacuum Compatibility

- as specified in LIGO-E960022-02-E, Vacuum Compatibility

Performance requirement

Cleaning procedures

- degradation of not worse than $h_{one year} < 1.10 \times h_0$ TBD
- · no present knowledge to allow this to lead to materials selection/ processes - setting up measurement task
- scary numbers from models: 1ppm absorption makes 25% change in ITM radius of curvature

Non-gaussian noise

'Needs considerable development.'

- characterization of environment
- characterization of suspension stress-release
- · characterization of laser source
- · could make requirement of 'PEM should do its job'

LIGO Project

25 of 27

LIGO-G960239-00-D

LIGO Project

26 of 27

LIGO-G960239-00-D

'Boilerplate'

Will refine and make useful the sections on

- Transportability
- · Design and construction
- Documentation
- · Test plans and procedures
- · Logistics
- · Preparation for Delivery

Quality Assurance

· should be organized by existing LIGO QA plan and staff

Optical Layout, Interface Documentation

To be addressed by Dennis Coyne

· top level information to be incorporated in DSR

Optical Layout: Background

• By its very nature the layout must be an integrated design effort

>>The task can be segmented into optical design/layout separately for the PSL, Input Optics, Output Optics and (to an extent) the ASC optlev & WFS tables

>>the Core Optics, Core Optics Support (pick-off beams & beam transport to viewports, beam dumps, baffling) are of necessity integrated layout efforts

>>Detector Systems Task

 Integrated layout effort must be done in-house with the tools and personnel trained in the use of the codes in-house.

>>Due to the intimate coupling of the optical layout and mechanical design/layout

>>Need for revision of the optical layout will exist through integration

1 of 12 LIGO-G960239-00-D / Optical Layou

Optical Layout: Background continued

 We have a considerable investment in the development of a LIGO model by ORA using their LightTools program

>>comprehensive, integrated 3D model of the entire LIGO system (PSL, IOO, ASC/LSC, COS and COC) with 3D surface representation of the vacuum chambers and manifolds

 The model was developed a bit prematurely in the program with the result that:

>>- the PSL is based on an Ar-Ion laser and must be changed substantially for the Nd-YAG system

>>- the Input Optics layout is somewhat different from the Univ. of Florida conceptual design

>>- the recycling cavity and mode cleaner lengths are different

- >>- the alignment approach is entirely different
- As a consequence, we are not wedded to LightTools

2 of 12

LIGO-G960239-00-D / Optical Layout

Optical Layout: Requirements

Optical Layout

>>sequential, geometric ray-tracing (non-sequential raytracing is not necessary)

>>include standard optical elements, in particular wedged beamsplitters, mirrors, beam dumps, wedged windows, etc.)

>>capable of tracing multiple internal reflections

>>able to handle on the order of 500 elements

>>import/export through IGES (3D) for coordination with mechanical CAD

>>sensitivity analysis (temperature, vibration, misalignment, etc.)

>>tool used principally by detector systems engin. for coordination/integration of design

Lens Design

>>for use in beam reducing telescope designs

>>should be easy to use and available to ASC, IOO, COS, PSL designers

3 of 12 LIGO-G960239-00-D / Optical Lavour

Optical Layout: Requirements continued

Gaussian Beam Propagation

>> principally for use by U. of FI. for the Input Optics mode matching telescope design

>>LIGO developed codes are used for analysis/design of the resonant cavities (FFT, Twiddle, SMAC, etc.)

Scattered Light Analysis

>> Chamber and vacuum manifold baffling and beam dumps are designed using "back of the envelope" analysis

>>scattered light computation used to confirm and better quantify expected performance

>>complex analysis & code -- maybe expedient to use an outside expert

Optical Layout: Tool Considerations

• Some of the better options -- not a complete listing/survey:

		Optical Layout	Lens Design	Gaussian Beam Prop.	Scattered Light	Ease of Use	Cost	Comments
LightTools	ORA	x	X			?	\$4500/yr ^a	CAD environment
Code V	ORA	X	X	X	X	Hard	\$0 ^b or \$100 or \$2500	"premier" tool; somewhat more difficult to use than ZEMAX
ZEMAX	Focus SW	X	X	X		Easy	\$2400 + \$350/yr	afordable & easy-to-use; gaussian beam propagation is new; not clear if it can han- dle ~ 500 elements for optical layout
OptiCad	OptiCad	X	X			?	\$3490 + \$500/yr	?
TracePro	Lambda	X	x			?	?	?
SYNOPSIS	BRO	X	X			Mod	\$2500	better than or equal to Code V
ASAP	BRO	λ	х	X	λ	Hard	\$8400/yr or \$15800 to \$23000	hybrid FFT/modal based code; maybe a better option for stray light analysis than APART

LIGO

5 of 12

LIGO-G960239-00-D / Optical Layout

		Optical Layout	Lens Design	Gaussian Beam Prop.	Scattered Light	Ease of Use	Cost	Comments
APART	BRO				X	Hard	\$15000 add to JPL seats	the "standard" for telescope stray light analysis
GLAD				х		?	\$5200	physical opics code
Paraxia				X		Mod	?	physical optics code (MIT/LIGO has a copy)

a. includes educational discount

In the state of th

Optical Layout: Tool Recommendations

• Optical Layout & Lens Design:

>> Ease of use and personnel familiarity outweigh technical considerations -- all of the reasonable options should be able to handle the geometrical ray-tracing problem

>>recommend ZEMAX for trial application

-will surely work for lens design

—if not adequate for optical layout in coordination with IDEAS CAD, then we could switch to another code, such as CODE V

Gaussian Beam Propagation

>>MIT experience with Paraxia suggests another code would be desirable

 $\hfill \ensuremath{\mathsf{\mathcal{S}}}$ ZEMAX has a gaussian beam propagation capability (new and untested by LIGO)

>>recommend trying ZEMAX and if it is not adequate, use CODE V (with contractor expert or ORA support if/as needed)

6 of 12 LIGO-G960239-00-0 / Optical Layou

Optical Layout: Tool Recommendations

- Scattered Light Analysis
 - >>Use either APART or ASAP from BRO
 - >>hire contractor expert or BRO

7 of 12

LIGO-G960239-00-D / Optical Layout

Optical Layout: Approach

- Hire optical design engineer (preferably familiar with CODE-V, ZEMAX and APART as contractor)
- Develop "corporate knowledge" by assigning LIGO permanent staff to oversee optical layout effort

>>LIGO assigned person carries the knowledge/capability forward into the integration stage

Optical Layout: Basic Requirements

 The IFO optical layout is basically the combination of IOO, COC and COS (which in turn supports LSC and ASC requirements)

>>PSL and ASC optical layouts can be treated separately

• The initial IFO beams are located as follows within the BT aperture:

Optical Layout: Basic Requirements (continued)

· COC wedges:

>>ETM, ITM, BS and FM with thick end of the wedge up

>>RM with thick end of the wedge down

>>Use the RM wedge to compensate for tilt deviation due to ITM and BS wedges (minimize angular compensation by the IOO mode matching telescope)

>>Wedge angles dictated by COS requirement to obtain LSC and ASC beam samples (first reflection) separated at the 1ppm level (TBR) from the main beam at the next chamber/SEI location

• COS

>>COS provides the transport optics for beam sampling and alignment beams as well as baffling and beam dumping for ghost beams and stray light

>>The optical layout basically serves to verify physical placement/compatibility of all of the optical elements

10 of 12 LIGO-G960239-00-D / Optical Layout

Physical Layout Isometric View

Nominal Beam Elevation

Interface Definition

Internal Interfaces

External Interface Definition

>>Detector - VE ICD

>>Detector - Civil Construction ICD

Internal Interface Definition

>>Interface definition organized by subsystem (i.e. unlike the Detector SysRD)

>>Propose a single Detector Internal Interface Control Document (IICD) (with change bars & change record)

-multiple documents (pairwise couplings) leads to too many documents with associated "overhead" in development & maintenance

>>Details in specifications and drawings are incorporated by reference only (not duplicated)

>>Integrated by Lead Engineer with input from subsystem task leaders

1 of 5 LIGO-G960239-00-D / Interf

Interface Definition

• Recommend "minimal" CDS interface definition since all of the following are within the CDS group scope:

 \rightarrow All physical layout of racks, cross-connection panels and cables

- >>All electrical connector specification
- >>All electrical signal level, EMI shielding, grounding, etc.

Interface Control

- Oversight by Lead Engineer
- Managed with tools:
 - >>Integrated Physical Layout
 - >>Optical Layout

>>Drawing Review/Check preceeding PDR, FDR and Fabrication Readiness Review

Example IICD Contents

- 3.1 REQUIRMENTS FOR INTERFACE
- 3.2 General Requirements
- 3.3 Alignment Sensing and Control (LSC)
- 3.3.1 Mechanical Interfaces

- Electrical Interfaces (see CDS design requirements)
- 3.3.1
 Mechanical Interfaces

 3.3.1.1
 Viewport Allocation

 3.3.1.2
 EnvelopePositions

 3.3.1.2
 EnvelopePositions

 3.3.1.2
 EnvelopePositions

 3.3.1.2
 UVFS Optical Table Assemblies

 3.3.1.2
 User Transul/Receive Table Assemblies

 3.3.1.2
 Cameras

 3.3.1.2
 Cameras

 3.3.1.2
 Cameras

 3.3.1.2
 Thermal Interfaces (NA)

 3.3.3
 Electrical Interfaces (see CDS design requireges)

 3.3.4
 Software Interfaces (see CDS design requireges)

 3.3.5
 Optical Interfaces (aceture, WF coulify)
 Software Interfaces (see CDS design requirements)

- 3.3.5 Optical Interfaces 3.3.5.1 Window Requirements (aperture, WF quality) 3.3.5.2 Beam Position/Angle 3.4 Length Sensing and Control (LSC) 3.5 Core Optics Components (COC)
- 3.6 Suspensions (SUS)
- 3.7 Seismic Isolation (SEI)
- 3.8 Core Optics Support (COS) 3.9 Pre-Stablized Laser (PSL)
- 3.10 Input/Output Optics

- 3.10.1 Input Optics 3.10.2 Output Optics 4 INTERFACE VERIFICATION

LIGO

5 of 5

LIGO-G960239-00-D / Interfaces