LIGO Data Analysis Data Formats and Modeling Activities

Albert Lazzarini LIGO Integration Group

NSF Fall Review 22 - 24 October 1996

í í

1 I

1

LIGO-G960211-00-E

/home/lazz/Presentations/NSF_Reviews/NSF_96_10/NSFReview961022-p1-v4.fm5

OUTLINE

- 1. Data Analysis System for the Initial LIGO Detector
 - >> Science requirements/computational requirements
 - >> Preliminary concept
 - Data analysis flow
 - Distribution of computing resources
 - Access to resources -- network options
 - >> Ongoing & planned activities; issues

2. Data Formats for LIGO Detector

- >> Status of collaboration with VIRGO
- >> Common format -- VIRGO model
- >> Unresolved issues
- **3.** Modeling & Simulation Activities in LIGO

Data Analysis for Initial LIGO

- LIGO Construction Phase includes Data Acquisition System (LIGO DAQ)
- Archival & Analysis Systems fall within scope of Operations Phase.
 - >> Need will grow gradually during detector commissioning
- McDaniel Panel Report to NSF identified need to develop analysis capability to support both Laboratory and Collaboration research:
 - >> Computing systems for LIGO; networks -- WAN; maintenance & management of resources
 - Science of the searches
 Science of the searches
 - >> Data distribution and availability -- PAC consultation
- LIGO is developing a conceptual plan for initial data analysis system which will be accessible to both Laboratory and Collaboration:
 - >> Outline prepared for Fall 1996 NSF Review
 - >> Refinement of requirements and concept to be conducted in conjunction and in consultation with broader community (LRC).
 - >> White paper to be available Spring/Summer 1997.

Data Analysis Requirements

Science & Computational Requirements

Initial LIGO Sources and Estimated Analysis Capability Requirements

	Sources	Initial LIGO	Data Analysis Requirements		
	Sources	Performance Estimate	CPU	Storage	Comments
Burst Signals ΔT < 1 s	Supernovae	Supernovae $\Re_0 \sim 2 - 3/$ yr @ 15 Mpc If sufficiently asymmetric		Minimal Need PEM/houskeep- ing data for veto	On-line analysis desir- able for correlation with other astrophysics: Electroweak
	BH/BH Collisions	ℜ ₀ ~ 1∕ yr(?) @ 500 Mpc; M _{BH} ~ 30 - 200M _{SUN}	are discovered, problem may increase in complexity.		 visible/radio/γ (HETE, GRO) V (Super-K/SNO)
					 VIRGO/GEO Resonant bars Waveforms unknown 2x/3x IFO correlation Off-line analysis to enhance SNR
Chirped Waveform $10s < \Delta T < 1000s$	NS/NS Inspirals	$\Re_0 \sim 3/$ yr @ 23 Mpc;		Templates/Data	 On-line analysis for M_{NS}>M_{SUN} can be
		$\Delta 1 \sim 4 \times 60 \text{ s}$ M _{NS} $\sim M_{SUN}$	~ 2 GFLOPS	~20 GB /~1 GB	done; appears feasible down to ~ 0.3 M _{SUN}
	BH/BH Inspirals	$\Delta T \sim 4 \times 500 \text{ s}$ $M_{NS} \sim 0.3 M_{SUN}$	~ 50 GFLOPS	~500 GB /~10 GB	• 2x/3x correlations feasi- ble depending on SNR.
	Divbii inspirais	$M_0 \sim 17$ yr @ 150 Mpc; $\Delta T \sim 4 \times 10$ s $M_{\rm NS} \sim 10 M_{\rm SUN}$;	~ 2 GFLOPS	~20 GB /~1 GB	 Coalescence event may generate correlated (EW) signals as above. PEM/housekeeping needed for vetoing Template matching (Wiener filtering) or wavelet analysis in f-t domain. Off-line analysis to enhance SNR

Science & Computational Requirements

	G	Initial LIGO	Data Analysis Requirements		
	Sources	Performance Estimate	CPU	Storage	Comments
Periodic Signal $\Delta T \sim 10^{6} - 10^{7} s$	Pulsars with mass asymmetry $h \propto \left(\frac{\varepsilon}{10^{-6}}\right) \left(\frac{10 \text{kpc}}{\text{r}}\right) \left(\frac{1 \text{ ms}}{\text{P}}\right)^2$	$\varepsilon = 3 \times 10^{-5}$; r=10kpc; P=1ms $T_{int} = 10^{6} s$ $SNR \approx 5$	Directed searches (e.g., galactic center, known pul- sars) require minimal resources All-sky searches require tens of TFLOPS beyond anticipated capabilities	10 GB for 10 ⁶ s (GW waveform)	 Off-line analysis Detection less sensitive to non-Gaussian noise; more sensitive to cali- bration drifts&drop-outs Detection techniques as for pulsars narrow line sources with modulated frequency. Correlations among interferometers may be performed (if needed) after detection. All-sky search requires decomposition of 4π sr into >10¹⁰ pixels, each region requiring a differ- ent spectral transforma- tion of same dataset.
Broadband Signals $\Delta T \sim 10^6 - 10^7 s$	Stochastic Background $\Omega \equiv \frac{\Omega_g}{\Omega_0}$	$\Omega \ge 3 \times 10^{-6}$ $\Delta f, f \approx 100 Hz$ $T_{int} = 10^{7} sec$	Minimal requirements analysis maybe done on single workstations		 Off-line analysis Requires multiple interferometers to be correlated; may use PEM to imprive SNR.

Initial LIGO Sources and Estimated Analysis Capability Requirements

LIGO Data Stream and Data Frame Design

- Frame is (structured) self-contained snapshot of data for a period of time
 - GW channel & ancillary IFO channels
 - Environmental monitoring (veto) channels
 - Facilities/Vacuum health & status

LIGO Data Analysis Flow --Baseline

/home/lazz/Presentations/NSF_Reviews/NSF_96_10/NSFReview961022-p1-v4.fm5

Data Analysis for Initial LIGO On-line Processing Computing Resources & Distribution

- Redundant systems at LA & WA Observatories
- Support for 1x, 2x, 3x operations independently
 - >> <u>Diagnostics</u> -- especially during commissioning
 - >> 2x/3x operations between sites feasible with reduced datastreams
 - Transient/burst signals ($\Delta T < 1s$) -- GW + superveto/QA
 - Inspiral & coalescence waveforms (10s < ΔT < 1000s)
 -- events

System configuration (target: M_{NS}>0.3 M_{SUN})

- Volatile data storage for 3 hours of data + 3 hours of analysis (FIFO) for 2 IFOs (WA) @ 100% data stream: 125GB+125GB
- >> Template storage for:300 GB
- >> ~ 2-50 GFLOP CPU system -- intrinsically parallel computational requirements:
 - Parallel processor(s) -- *monolithic/efficient/more expensive*
 - Workstation cluster -- versatile/less efficient/less expensive
 - Specialized (DSP) system -- less versatile/efficient/least expensive/upgrade difficult

Data Analysis for Initial LIGO On-line Processing Computing Resources & Distribution

• System configuration (cont.)

- Site-to-site communication link to provide 2x and 3x realtime cross-correlation
 - Selected (pre-processed) data subsets (GW + super-veto; event lists)
 - Two way: WA->LA & LA->WA
 - Can support independent algorithms
 - T1: 0.2 MB/s is barely sufficient for GW WA->LA
 - T3 (6 MB/s) or ATM (20 MB/s) will be available by time needed

Data Analysis for Initial LIGO On-line Processing Computing Resources & Distribution

Data Analysis for Initial LIGO Off-line Processing Computing Resources & Distribution

- Single system at a LIGO Laboratory University*
- Supports analyses either not feasible or not required on-line.
 - >> Stochastic background
 - >> Pulsar searches (directed/partial sky)
 - >> Inspiral with combined IFOs (vector data for max. SNR)
 - >> Research on algorithm development & signal processing
 - >> Refined analyses
 - >> Novel searches
- Provides/manipulates data archive.
- Data access via WAN to other LIGO sites and users.
- Utilizes and is designed around existing University resources for maintenance, availability, communications & support.

Data Analysis for Initial LIGO Off-line Processing Computing Resources & Distribution

- System configuration (target: max. capability for multiple users)
 - >> Large data archive (~ 500 TB/yr => 10k tapes/yr @ 50 GB/tape => \$0.5M/yr @ \$50/tape)
 - >> Robotic tape access -- size TBD
 - >> Disc cache system capable of storing 450GB of data
 - 8 hours of 100% data ~ 450 GB
 - ~ 5 weeks of GW data (suitably filtered to not require ancillary channels)
 - Processors for computationally intense analyses (100+ GFLOPS)
 - Support multiple, independent analyses (4 6)
 - Parallel processor(s) -- monolithic/efficient/more expensive
 - Workstation cluster -- versatile/less efficient/less expensive
 - Distinctions will fade with time
 - >> High bandwidth communication to other LIGO sites & collaborating institutions
 - T3 (6 MB/s) or ATM (20 MB/s)

Data Analysis for Initial LIGO Off-line Processing Computing Resources & Distribution

LIGO Site-to-site Communications

- >> Hanford-Livingston link permits real-time crosscorrelations among instruments
- >> Caltech-MIT link provides high speed link to data archives; data tapes to be archived at university.
- >> Site-University links provides site scientific staff access to archived data
- >> University gateways provide broader access to database
- >> Data tapes transported to University repository

Site Communications

- Options for utilizing existing resources -- these are being explored:
 - >> Caltech:
 - HEP link to MIT/CERN (DOE:ESNET; plan: OC12@70+MB/ s)
 - IPAC/JPL link to NASA backbone (NASA)
 - CACR link(s) to SC centers (NSF: VBNS->OC12@70+MB/s))
 - >> MIT:
 - HEP link to Caltech/CERN (DOE ESNET)
 - NASA backbone (NASA)
 - Link(s) to SC centers (NSF VBNS)
 - >> Livingston:
 - LSU link to MSFC/NASA backbone (NASA)
 - LSU link to SC centers (NSF VBNS)
 - >> Hanford:
 - HNR/BNWL (DOE ESNET)

Planned Activities Timeline for Development

Milestone or Event	Date	Communications	Hardware	Software
Begin Coincidence Operations	7/00	Common		
On-Line System Available	1/00	Common		
	3/99-12/99	utation	Procurement & Integration	int Verificat
	11/98		Specifications	lopme
System FDR	11/98		Design & Prototyping	Specifications
System PDR	11/97		T TOTOL PARA	Design & Prototyping
System DRR	5/97	Ť		Trocoryping

Ongoing Activities Prototyping

- Detector construction phase is developing a prototype DAQ system for the 40m facility
 - Vtilize 40m to acquire datasets of substantial length (1/2 day) on a regular basis
 - >> Experimental use of ancillary channels for data qualification
- LIGO co-authored joint proposal for IBM Sponsored University Research (SUR) Grant funding - \$800k of processor hardware will be awarded
 - >> LIGO will participate in hardware configuration definition; to be shared with other campus groups
 - Hardware to be installed at Center for Advanced Computing Research (CACR)
 - >> CACR already has similar NSF-funded hardware for astrophysics data analysis
- Use ongoing work to provide realistic scaling of parallel analysis algorithms for large data sets
- Establish data link from 40m to CACR

Issues

- LIGO Analysis System design must contend with two conflicting needs...
 - >> Rate of technology growth argues for delaying investment in hardware to the latest possible moment...
 - >> Need to develop/debug analysis software on specific platform(s) to support detector commissioning. COTS & strict adherence to standards.
- Efficient utilization of 40m prototype DAQ system and CACR is key to developing an extensible, modular system which is capable of providing LIGO Laboratory & Collaboration adequate analysis tools for the first generation detectors:
 - >> Validation of software
 - >> Identification of best hardware approaches
 - >> Benchmarks for on-line processing

Issues (cont.)

- Efficient use of detector ancillary data channels is key to containing archive growth
 - 100% data stream corresponds to >10⁴ tapes/year;
 - GW channels correspond to <10² tapes/year
- Actual cost of archival is bounded...
- Two approaches possible...
 - >> Start with minimum channel count and add channels as experience dictates through commissioning phase
 - Start with 100% channel count and pare back as experience dictates
 - >> First option more reasonable and less costly.
- During definition phase, LIGO will actively seek LRC representation in design inputs.
 - >> This is the first presentation by LIGO
 - >> Process will take a year or more

LIGO-VIRGO DATA FORMAT Status

- Initial meeting with VIRGO in April hosted by LIGO
 - >> VIRGO format presented, compared with LIGO needs
 - > Attractive (to LIGO) because of maturity & availability of existing I/O libraries
 - >> Tuned for time-series data stream (vs. events or images)

Alternatives explored by LIGO

- >> Public domain standards CDF/HDF
- >> Used for image frame data distribution (NASA)
- >> Greater overhead per frame than VIRGO
- >> Well suited for eventual data distribution
- Continued interaction with VIRGO
 - >> Format evolving under collaborative effort
 - >> Software availability: commited to public domain access
 - >> Joint approach to be presented at TAMA Fall Meeting in Japan

LIGO-VIRGO DATA FORMATS

PROPOSED FORMAT (Adopted from VIRGO)

- >> FRAMES (unit of information containing all information needed to understand the interferometer behavior over a finite time interval)
- >> C STRUCTURES (frames are organized as a set of C structures)
- >> FRAME HEADER (holds pointers to additional structures that contain all information)
- >> LINK LISTS (used to collect generic data types, PEM, ADC, etc.)
- HEADER HOOKS (pointing to frame elements used by on-line processing or by off-line reprocessing)
- >> 2^N DATA POINTS (allowing faster FFT analysis on individual frames)
- >> DICTIONARY (acts as a catalog of C structures and pointer offsets)

LIGO-VIRGO DATA FORMAT

- Frame has tree structure:
- Individual blocks are C structures
- Extensible to arbitrary length with design evolution
- Utilized for both on-liftle & off-line analyses

LIGO-G960211-00-E

G

LIGO-VIRGO DATA FORMAT Issues

- Testing & verification at LIGO using I/O libraries for tape uncovered problems with C function calls between platforms (DEC vs. SUN)
 - >> LIGO wants to adhere to established software-hardware interface standards (i.e., POSIX) to minimize cost of code transportability/maintainability/upgrade/compatibility
- LIGO is discussing concerns with VIRGO; depending on outcome, LIGO may adopt VIRGO paradigm but implement its own code.
- Issue to be resolved by Spring 1997.
- QA is the key to code extensibility, adaptability& maintainability.

Modeling Activities Overview

Modeling activities

- Time domain interferometer model with length and alignment D.O.F.
 - >> Objective
 - Demonstration of lock acquisition
 - dynamic stability of coupled alignment and length controllers
 - transfer functions between Length and Alignment DOF
 - Pseudo-data for noise analysis
 - >> Parallel efforts by D. Redding/JPL and R. Beausoleil/Cygnus
 - different approaches
 - model cross-validation
 - different application speed vs. accuracy
 - >> D. Redding time difference equations; iterative solution
 - Length (single D.O.F.) part complete
 - Used for the design of LSC
 - >> R. Beausoleil forward time propagator kernel
 - single Fabry-Perot cavity with length and alignment DOF complete -- being validated

Modeling activities

• FFT model

>> Detailed study of interferometer performance

e.g., sensitivity study of mirror phase/reflectivity error due to coating & polishing
 >> Code is parallelized

running on PARAGON in CACR - 10 x faster than SS20

>> Interface improved:

- GUI interface for input data
- Remote scripting
- Database for maintaining the run summaries

End-to-End model

- Frequency domain (steady state model) version
 - >> Interferometer: *Twiddle* by M.Regeher/H. Yamamoto

>> Noise models: K. Blackburn (& R. Weiss et al.)

- Transition to time domain
 - >> Interferometer and noise in freq. domain are essentially done
 - >> Control system for LIGO is still in design stage
 - >> Time domain model will be developed and is more suited when modeling control system
 - Time domain IFO model with length and angular DOF JPL/Cygnus models
 - Time domain noise models need to be developed
- Time domain version just started
 - >> First target is 40 m testbed serve as a prototype for the full version
 - >> Inclusion of control system use design for 40m recycling
 - >> Include fundamental building blocks for LIGO

List of acronyms in the order they appear in presentation

VIRGO	Franco-Italian Laser Interferometer Collaboration
CDS/DAQ	Computer & Data Systems (part of Detector) Data Acquisition System
NSF	National Science Foundation
WAN/LAN	Wide/Local Area (Computer) Network
PAC	LIGO Program Advisory Committee (yet to be formed)
LRC	LIGO Research Community
NS	Neutron Star; BHBlack Hole
S	Second (T= time)
kB/MB	kilo-/mega-/giga/terabyte: 10^3/10^6/10^9/10^12 bytes /GB/TB
kFLOPS	kilo/mega/giga Floating Point Operations per Second /MFLOP /GFLOPS
PEM	LIGO Physical Environment Monitoring system
SNR	Signal to Noise Ratio
IFO	InterFerOmeter
kpc	3 x 10^3 lightyear (kiloparsec)

GW	Gravitational Wave		
LA,WA	Louisiana, Washington sites (also, Hanford, Livingston)		
1x/2x/3x	notation for single, double, and three-fold coincidence operational modes of the LIGO detector comprising of 3 interferometers (IFOs)		
FIFO	First In First Out method of reading data written to dynamic memory		
CPU	Central Processing Unit (a generic computer processor)		
DSP	Digital Signal Processor-specialized CPU efficient at particular algorithmic calculations (FFTs)		
FFT	Fast (Discrete) Fourier Transform		
АТМ	Asynchronous Transfer Mode; a protocol for inter-processor communications		
HEP	High Energy Physics		
DOE/ESNE	TDept. of Energy/ Energy Sciences Network		
T1/T3/	Various telecommunications channels and bandwidths, ATM/OC12 approximately: T1: 200 kB/s; T3: 6 MB/s; ATM: 20MB/s; OC12: 70 MB/s.		
IPAC/JPL	Image Processing and Analysis Center (at Caltech) /NASA Jet Propulsion laboratory		
CACR	Center for Advanced Computing Research @ Caltech		

VBNS	NSF counterpart to DOE's ESNET.
LSU	Louisiana State University
SC	Supercomputer(ing) Center(s)
HNR/BNWL	Hanford Nuclear Reservation (LIGO Site)/ Battelle Northwest Laboratories.
DRR	Design Readiness Review
PDR	Preliminary Design Review
FDR	Final Design Review
SUR	IBM's Sponsored University Research Grants Program
COTS	"Commercial, Off-the-shelf Software" and acronym for "buy versus make" when deciding how to develop software.
CDF/HDF	Common/Hierarchical Data Format-Image distribution data formats available in public domain.
TAMA	Japanese Interferometric Gravitational Wave Detector Project
ADC	Analog-to-digital convertor
DEC/SUN	Computer manufacturers: Digital Equipment Corp/ Sun Microsystems, Inc.
POSIX	Established industry standard for software/hardware interfaces.

DOF Degree(s) Of Freedom

TWIDDLE Name of a particular modeling code within LIGO.

ISC Interferometer/Alignment/Length Sensing & Control Systems /ASC/LSC

SS20 SunSparc 20 Workstation