ALIGNMENT SENSING/CONTROL DESIGN REQUIREMENTS REVIEW

29 August 1996

- I. Introduction (P Fritschel)
- II. Requirements: Initial and Acquisition Modes (PF)
- III. Conceptual Design: Initial and Acq. Modes (M Zucker)
- IV. Requirements: Detection and Diagnostic Modes (PF)
- V. Conceptual Design: Detection Mode (D Sigg)
- VI. Alignment & Servo Modeling (G González)
- VII. Diagnostics, Interfaces & Open Issues (M Zucker)

DCC

ASC: SCOPE AND RESPONSIBILITIES

Installation Support:

- >> determination of interferometer optical axes
- >> provide readout of alignment of suspended optics (IOO, COC, COS)
- Beam Centering:
 - >> hardware and algorithms for sensing and controlling the beam position on the suspended optics
- Angular Alignment:
 - >> sensors and controls for maintaining the mode cleaner and interferometer (COC) angular alignment

2

Support commissioning, test and diagnostics of the Detector subsystems

ASC: Modes of Operation

Initial Alignment Mode

- >> INSTALLATION: provide a readout (referenced to the beam axes) of the initial pitch and yaw orientation of each suspended optic
- >> Establish input beam direction: adjust input beam direction (& beamsplitter angle) so that it is down the tubes and on the mirrors
- >> Adjust the alignment of the COC optics such that they are within the Acquisition Alignment tolerance (degree of alignment which enables length locking by LSC of the interferometer)

Acquisition Alignment Mode

>> Holding mode: COC optics are held within the Acquisition Alignment tolerance continuously over the lock acquisition procedure

3

>> Mode cleaner alignment is controlled

ASC: Modes of Operation

Detection Mode

- >> sense and control alignment of the mode cleaner
- >> sense and control alignment of the interferometer (COC)
- >> sense and control the centering of the beams on the COC optics
- >> provide a measure of the alignment and centering

Diagnostic/Calibration Mode(s)

- >> provide diagnostic capability of ASC performance
- >> calibration procedures within the ASC
- >> provide a measure of the mode matching of the IOO beam to the intererometer
 - >> support diagnosis of other subsystems

ORIENTATION DEGREES-OF-FREEDOM AND COORDINATES

Pitch = θ (Θ normalized)

Div. angle =

Yaw = ϕ (Φ normalized)

 $9.65 \mu rad$

Common/Differential Basis:

dark port

ASSUMPTIONS & DEPENDENCIES FOR DERIVING REQUIREMENTS

- Systems: each noise mechanism no more than 0.5% degradation of SRD curve
- LSC: alignment deviation at which length acquisition is posible: 0.5 μradian per degree-of-freedom per optic
- IOO: Input beam direction fluctuations figure in determining Detection mode alignment requirement

• SUS:

- >> angular control range
- >> controller angular noise
- >> thermal noise of pitch/yaw modes

• COC:

- >> mirror radii of curvature
- >> apertures of optics

PF1

ASC REQUIREMENTS

Initial and Acquisition Alignment Modes

ASC Reg's: Initial Alignment - Interferometer Installation

- During installation of interferometer optics, the ASC is required to provide the following position information:
 - >> information for locating an optical component transverse to the beam axis, within ~1 mm of the desired position
 - >> orientation information, allowing the normal of the coated surface to be aligned with the beam axis to within 10% of the SUS actuator angular dynamic range
 - current SUS range is 2 mrad p-p in pitch and yaw
 - ASC read-out thus must be accurate to within \pm 0.1 mrad of the beam axis

8

ASC Reg's: IA - Transition to Acquisition Alignment

- Mode cleaner attain alignment which enables length locking
 - >> to allow unambiguous locking on TEM_{00} mode, we require that the MC angles be adjusted to within (1/5 x cavity divergence angle) of ideal alignment
- IFO adjust alignment of COC and input beam to achieve the LSC Acquisition Alignment tolerance
 - >> alignment tolerance is taken to be 0.5 μradian per angular degree-of-freedom (1/20 of the beam divergence angle in the arm cavity)

9

>> modeling work in progress will examine this issue

ASC Reg's: Acquisition Alignment Mode

- Mode Cleaner is locked and aligned at its final alignment
 - >> the MC must be aligned such that the TEM₀₀ power transmission is no less than 99% of the perfectly aligned case
 - >> this degree of alignment must be reached within 5 sec of length lock
- COC are maintained within the LSC Acquisition Alignment tolerance
 - >> Acquisition Alignment is a holding mode for the COC
 - >> alignment must be held for a time adequate to permit LSC acquistion

CONCEPTUAL DESIGN: INITIAL AND ACQUISITION ALIGNMENT

- Initial alignment: 3-step procedure
 - >>Support SUS installation setup to ~ 0.1 mrad before pumpdown
 - Surveying tool kit
 - >>Set up "flywheel" references to maintain this accuracy through pumpdown
 - Optical lever systems
 - >>Lock RMI subset interferometer & iterate angles to achieve 0.5 µrad
 - Beam centering video and QPD systems
- Acquisition alignment: hold for LSC to acquire
 - >>Local SUS damping adequate over relevant timescales
 - >>Backup: use optical lever readouts to hold some or all DOF

INITIAL ALIGNMENT: SUS INSTALLATION SUPPORT

- Starting point: facility monuments (previously used by PSI)
 - >>Monument layout & specsTBD, but PSI requirements (+/- 2 mm transverse WRT BT axes) reasonably consistent with ours
- Conventional surveying to set up "Pilot Beams" | BT axes
 Commercial tooling usable or readily adaptable
- Lateral transfer optics (periscope tools) give pilot beam samples at component locations
- Stunt-mirrors (dummy mirror tools) to set up & null optical levers
- Install COC using optical lever readouts
- (check optical levers after pumpdown)

INITIAL ALIGNMENT: SETUP AND TOOLING

13

INITIAL ALIGNMENT: OPTICAL LEVERS

- Short-arm (~ 2-4 m) "local" systems; fiber-coupled LD Tx,
 QPD Rx, mounted to external demountable pedestals
- Port-mounted internal "reach" periscopes grab output beams where req'd.

INITIAL ALIGNMENT: INSTALLATION PROCEDURE

INITIAL ALIGNMENT: THREADING THE BEAM TUBES

- Lock up the recycled short Michelson (like the PNI)
 - -Engage WFS control on short RMI after locking to hold relative alignment
- Seek transmitted/scattered light (watts!) at ETM locations
 - -Video cameras monitor interior wall of ETM chamber
- Iterate whole RMI to repoint beams (search pattern if req'd)
 - tube clear aperture dia. = 0.25 mrad, odds not bad for hole-in-one
- When through beams detected, measure positions & reckon/goto ETM center
 - -Bring to null on ETM transmission QPD
- Rotate ETM's to retroreflection
- Engage LSC...

Initial Alignment: Threading the Beam Tubes (CONT'D)

NITIAL ALIGNMENT: ACQUISITION PROCEDURE

ASC REQUIREMENTS

Detection & Diagnostic Mode Requirements

PF2

Noise Budget Allocation Summary of 0.5% Degradation Mechanisms

- **ASC.** Mode cleaner misalignment ⇒ power loss
- **ASC.** COC misalignment ⇒ power loss
- ASC. Allotment of anti-symmtric port light for ASC detection
 ⇒ power loss in GW detection
- ASC & IOO. COC misalignment + input beam direction fluctuations ⇒ phase noise
- ASC & SUS. Beam de-centering + angular noise ⇒ displacement noise
- ASC & SUS. ASC control system noise + SUS controller cross-coupling ⇒ displacement noise

20

PF2

ASC REQ'S: DETECTION MODE ALIGNMENT REQUIREMENTS

- Mode Cleaner no more than 1% power transmission loss due to misalignment (div. angle ≈ 180 μrad ⇒ req. ~ 10 μrad/d.o.f.)
- Core Optics Components two main effects:
 - >> Beam pointing sensitivity. Misalignments create a first order sensitivity to fluctuations of the input beam direction.
 - >> Shot noise limited sensitivity. Misalignments reduce the power in the cavities, quadratically with each d.o.f.

 u_i , basis of ellipsoid axes

 Ψ_i , angles in u_i basis

 σ_i , lengths (variances) of ellipsoid axes, norm. units

$$\frac{SNR_{\text{misaligned}}}{SNR_{\text{aligned}}} = 1 - 2\sum_{i=1}^{5} \left(\frac{\Psi_i}{\sigma_i}\right)^2$$

COC ALIGNMENT REQ. - VARIANCE ELLIPSOID

	variance	ellipsoid axis					
	σ_i^2	$\Delta heta_{ETM}$	$\Delta heta_{ITM}$	$\overline{\theta_{ETM}}$	$\overline{\theta_{ITM}}$	RM	u_i
signal-to-noise	6.34	0	0	0.39	- 0.74	- 0.54	<i>u</i> ₅
	0.790	0.014	- 0.030	0.92	0.32	0.23	u ₄
	0.160	0.41	- 0.91	- 0.03	0	- 0.01	u_3
	0.00107	0.91	0.41	0	0	0	u_2
	0.00074	0	0	0	- 0.59	0.81	u_I

Requirement:

$$2\sum_{i=1}^{5} \left(\frac{\Psi_i}{\sigma_i}\right)^2 \le 0.5\%$$

if all angles have same rms misalignment,

$$\Delta\theta \le \sqrt{\frac{0.005}{2\sum (1/\sigma_i^2)}}$$

or can distribute pain according to variance

PF2

ALIGNMENT REQUIREMENT – BEAM JITTER COUPLING

- Misalignment + beam jitter = phase noise < SRD/10
- Effect has been computed with modal model, including an audio sideband model of the input beam jitter
- Result is expressed as the equivalent displacement signal:

$$\delta L_{-} \approx 7.1 \times 10^{-21} \left(\frac{\Psi_{2}}{10^{-8} \text{ rad}} \right) \left(\frac{\alpha + 0.16x}{4 \times 10^{-9} / \sqrt{\text{Hz}}} \right) \frac{\text{m}}{\sqrt{\text{Hz}}}$$

α = input beam tilt, units of beam divergence angle

x =input beam translation, units of waist size

• Approach is to keep ψ_2 at the level driven by shot noise (10^{-8} rad) , and require beam jitter to satisfy above

SUMMARY OF ALIGNMENT REQUIREMENTS

Degree of freedom	Allowed misalignment, rms	Degradation of shot noise sensitivity	Beam jitter - Misalignment noise at 150 Hz	
$\Delta \theta_{ m ETM}$, $\Delta \phi_{ m ETM}$			$\delta L_{-} = 1 \times 10^{-20} \text{ m/VHz}$	
$\overline{\theta}_{ETM}$, $\overline{\phi}_{ETM}$				
$\Delta \theta_{ m ITM}$, $\Delta \phi_{ m ITM}$	1.0 × 10 ⁻⁸ rad (each d.o.f.)	0.5% (sum over all d.o.f.)	$\delta L_{-} = 1.6 \times 10^{-21} \text{ m/}\sqrt{\text{Hz}}$	
$\overline{\theta}_{ITM}$, $\overline{\phi}_{ITM}$, , , , ,		_	
θ_{RM} , ϕ_{RM}				
u_1	1.0 × 10 ⁻⁸ rad	0.14%	_	
u_2	1.0 × 10 ⁻⁸ rad	0.1%	$\delta L_{-} = 1 \times 10^{-20} \text{ m//Hz}$	
<i>u</i> ₃	$3.0 \times 10^{-8} \text{ rad}$	0.007%	_	
u_4	$5.0 \times 10^{-8} \text{ rad}$	0.003%	_	
u_5	$1.0 \times 10^{-7} \text{ rad}$	0.002%	_	

PF2

BEAM CENTERING REQUIREMENTS

- Lever arm effect: angle noise + beam offset from c.o.r. = displacement noise < SRD/10
 - >> Thermal noise of pitch and yaw modes
 - >> Coil driver noise
 - >> Seismic noise
- Diffraction: increased diffraction loss for a de-centered beam
- COC: Test Masses. Lever arm effect is the driver
 - >> at 40 Hz: thermal noise + coil driver = $3.6 \times 10^{-17} \text{ rad}/\sqrt{\text{Hz}}$ (SUS DRD)
 - >> angle noise x offset < 5×10^{-20} m/ $\sqrt{\text{Hz}}$ (40 Hz)
 - >> offset from center of rotation (d) < 1.4 mm
- \Rightarrow take requirement to be $d \le 1.0$ mm for test masses

CENTERING REQUIREMENTS CONT'D

- Beamsplitter & Recycling mirror. Diffraction is the driver (displacement noise can be much higher than for TMs).
 - >> BS aperture loss is below 100 ppm (COC req) for offset up to 1 cm from minimum loss position (COC DRD)
 - >> FFT tests of aperture shifts no significant effects seen for an offset of 1cm
- \Rightarrow take requirement to be $d \le 5.0$ mm for the BS and RM
- Mode Cleaner mirrors. Lever arm effect.
 - >> ASC/SUS lever arm noise is alloted 20% for pitch and 10% for yaw of the displacement noise leading to 10^{-4} Hz/ $\sqrt{\rm Hz}$ stability requirement
 - >> given the SUS thermal noise reqs. for the MC mirrors:
- \Rightarrow requirement is $d \le 3.0$ mm for mode cleaner mirrors

PF2

CONTROL SYSTEM NOISE ALLOCATION

- Displacement noise in GW band
 - >> test masses & BS: (ASC angle noise + SUS x-coupling) no greater than SRD/10
 - >> recycling mirror & steering mirrors: no greater than thermal noise req.
- Angular noise in GW band
 - >> small enough that centering tolerance is not affected
 - >> < 50% of thermal/coil driver/seismic angle noise
- Analogous requirements for mode cleaner control signals
- Power allocation
 - >> ASC can take no more than 1% of the anti-symmetric port power

27

DIAGNOSTIC & COMMISSIONING REQUIREMENTS

- Provide a measure of the mode matching of the input beam to the interferometer
- Determine offsets from lock-points from optimal alignment
- Determine GW band noise produced by control systems
- Monitor applied feedback torques
- Determine closed loop control loop transfer functions
- Capability to produce controlled misalignments of all degrees-of-freedom

ASC CONCEPTUAL DESIGN DETECTION MODE

ASC DRD II — August 29, 1996

Daniel Sigg

- ☐ Part 1: Design Overview
 - O Description/features of the ASC detection mode
 - O Detectors (sensors), data links and data processing
- ☐ Part 2: Modeling
 - O Alignment matrix
 - O Beam direction

ASC SYSTEM OVERVIEW

DESCRIPTION/FEATURES OF ASC DETECTION MODE

- ☐ Angular (mis)alignment
 - O Wavefront sensing: measuring TEM₁₀/TEM₀₁ excitation in the ifo
 - O Adjust RM, ITM and ETM relative to the input beam direction
- □ Beam direction
 - O Quadrant sensors at arm cavity transmission and ifo reflection
 - Adjust input beam direction and beamsplitter orientation.
- ☐ Not used for control during detection mode
 - O Optical lever data / local suspension sensors
 - O Beam centering on ITM and BS
 - O Mode matching of the input beam

DESCRIPTION/FEATURES OF ASC DETECTION MODE (CONTINUED)

- ☐ Ifo layout and optical configuration
 - O Ifo lengths must be locked for wavefront sensing
 - O needs non-resonant sidebands to separate RM and common ITM
 - O uses existing ports
- ☐ Digital servo system
 - O Complicated enough to make a digital implementation highly desirable
 - O Data acquisition for alignment is then part of the ASC subsystem

DETECTORS AND SENSORS FOR THE ASC

WAVEFRONT SENSOR SCHEMATICS

DATA LINKS AND PROCESSING

ALIGNMENT MATRIX

	Powe		Angular Degree-of-Freedom					
	port	split	Δ ΕΤΜ	ΔITM	ETM	ITM	RM	
1	dark port	1%	-0.33	-0.15	0	0	0	
2	reflection	1%	5.7×10^{-4}	-0.034	0	0.0034	-0.0048	
3		1%	0	0	0	0.19	-0.27	
4	non-	2%	0	0	-5.8×10^{-4}	-2.6×10^{-4}	6.1 × 10 ⁻³	
5	resonant sideband	2%	0	0	-6.6 × 10 ⁻³	-3.0×10^{-3}	5.3×10^{-4}	
6	pick-off	30%	-5.0×10^{-5}	-2.9×10^{-3}	0	2.9×10^{-4}	-4.0×10^{-4}	

Units are Watts per normalized angle.

FEATURES OF ALIGNMENT MATRIX

- ☐ Non-resonant sidebands separate RM and common ITM
- ■WFS 1 and 3 are parallel to the most sensitive degree-offreedoms for gravitational-wave degradation
- Non-resonant sidebands improve common ETM detection
- □ Dark port needed for differential ETM
- ☐ Dark port has no carrier TEM₀₀
 - → no separation between differential ITM and ETM
- ■WFS in reflection need carrier TEM₀₀
 - → ifo must not be too close to critically matched!
- ■WFS at pick-off is insensitive to ifo matching

ALIGNMENT ERRORS

- ☐ Shot noise $\leq 10^{-14} \text{ rad} / \sqrt{\text{Hz}}$
 - O Unimportant for alignment requirements at low frequencies
 - \bigcirc Is larger than thermal noise at 100 Hz \rightarrow filter for controller signals
- ☐ Offset Errors (should be smaller than 10⁻⁸ rad)
 - O Residual length signals: $< \sim 10^{-9}$ rad (30dB CMRR)
 - O RF pickup: $< \sim 10^{-10}$ rad
 - \odot Electronic offsets: $< \sim 10^{-9}$ rad

BEAM DIRECTION

- ☐ Dependent degree-of-freedoms
 - O WFS adjusts the mirrors relative to the input beam direction
 - Input beam tilt (shift) and the beam splitter orientation have to be controlled by other means
- □ Quadrant position sensor in transmission of the arm cavity
- ☐ Beam direction matrix

port	BS	IB _{tilt}	lB _{shift}
reflection	-0.033	-0.011	1.02
transmission ETM ₁	0.019	-1.12	1.33
transmission ETM ₂	2.46	-1.12	1.33

Units are waist size per divergence angle (for BS and IB_{tilt}) or per waist size (IB_{shift}).

Alignment Fluctuations Modeling

Goal: get a baseline for design of servos that satisfy requirements.

or: how far are we from requirements when we begin?

Tools: Flow diagram (next VG)

Matlab-Simulink dynamical modeling

Inputs to the flow diagram (borrowed from various sources)

- >> measured ground noise (A. Rohay)
- >> modeled stack transfer functions (E. Ponslet, Hytec)
- >> SUS DRR and PDR
- >> etc...

Requirements:

5 10⁻⁷ rad rms (A) 10⁻⁸ rad rms (D) <(pend. thermal noise)/ (10*off centering distance)

41

42

Matlab-Simulink model

ground to stacks

stacks to pendulum

Matlab model: relevant inputs

- >>ground noise: A. Rohay measurements at the sites.

 rms noise: ~2 microns at LA, ~0.5 micron at WA

 rms due to microseismic peak
- >>building tilts: air pressure fluctuations (*J.Geophys.Res.* **85** 3339, 1967)

 vacuum loading

 typical air pressure-induced rms tilts ~5 nanoradians (~0.1-1 sec)
- >>drifts in building tilts due to temperature response of foundations (Parsons) tilt drifts ~ 400 nanoradians in 10 minutes
- >> stacks transfer functions: from E. Ponslet modeling (Hytec)

 Different stack springs produce big differences, in rms and in spectra.

 Stacks tilts x downtube length ~ stack displacements
- >>pendulum equations: based in Seiji Kawamura T960040-00-D, Pendulum pitch is excited by displacement of suspension point.

Ground to stacks: results with LA ground noise and viton spring stacks.

Tilts at different points between ground and top of stacks.

Stacks to pendulum: mechanical pendulum and servos.

Free and damped response to seismic input:

Servos I: Velocity damping servo.

- —Pendulum pitch rms is $> 10^{-7}$ rad for t>2 sec.
- —Sensor noise is larger than stack tilt.
- **-**Summary:

Velocity damping servo	rad rms	rad pp
viton spring stacks (LA)	4.4 10 ⁻⁷	3.1 10 ⁻⁶
viton spring stacks (WA)	9.0 10 ⁻⁸	6.4 10 ⁻⁷
leaf spring stacks (LA)	5.9 10 ⁻⁷	4.3 10 ⁻⁶
leaf spring stacks (WA)	1.1 10 ⁻⁷	8.2 10 ⁻⁷

residual rms might be too large for length lock acquisition

10⁻¹⁰
10⁻¹⁰
10⁻¹⁰
10⁻¹¹
10⁻¹²
10⁻¹³
10⁻²
10⁻¹

LA site, viton stacks

Servos II: "Modified" servo

- If we use the suspension towers as tilt references, we might do better than just damping the resonances.
- Since this servo is to be used in acquisition mode, we do not need low spectral density in gw band: do not use low pass filters.
- Tilt reference is dominated by sensor noise.
- Residual pitch rms is ~10⁻⁷rad or smaller in all cases.

Servos III: WFS servos

- In detection mode, we need residual rms <10⁻⁸rad and low noise in gw band=> servo needs noise filtering.
- Angular reference is interferometric, from WFS (not local)=> stack tilts, OSEM sensor noise are not important.
- Servo might need customizing to the stack resonances.

Unity gain frequency	4.5 Hz
(In band) Loop response	2 poles at 0 Hz, 1 zero at 1.5 Hz
High frequency filtering	6th order elliptic, 1 dB passband ripple, 40 dB stopband attenuation, 30 Hz cut off frequency
Phase margin	45°
Gain margin	8 dB

Servos III: WFS servo (cont.)

WFS servo	rad rms	rad pp
viton spring stacks (LA)	9.8 10 9	1.1107
viton spring stacks (WA)	2.1 10-5	1.510 ⁻³
leaf spring stacks (LA)	5.4 10 ⁻⁸	4.0 10 ⁻⁷
leaf spring stacks (WA)	4.2 10 ⁻⁹	3.1 10 ⁻⁸

Conclusions

- >> The requirements can be met (at least conceptually), both for acquisition and detection mode.
 - >> We may need to "customize" servos to sites and/or stacks.
 - >> We need to:
 - have experimental model validation
 - incorporate latest Hytec modeling results
 - study remaining noise paths (mechanical and electronic cross couplings, etc.)
 - have a noise model for YAW
 - have a multiple input, multiple output model for WFS servo
 - use length locking servos for displacement controllers

but we don't foresee surprises (!)...

ASC DIAGNOSTICS

Alternate control sensing & feedback

- optical levers for some DOF in Detection mode
- alternate WFS sensors/matrix elements
- CM feedback to mirrors vs. input beam

Nonstandard optical configurations

- want WFS operable for short recycled Michelson (for ASC alignment procedure)
- other variants for interferometer diagnostics (single cavity, etc.); some w/out WFS

Mode matching readout

- quasi-static spatial mode decomposition of reflected & dark port patterns
- use controlled optic movements to resolve phase ambiguity

WFS calibration & matrix diagonalization

similar to beam centering procedure

INTERFACES: CONTROL SIGNAL

ASC SIGNAL FLOW

INTERFACES: COS OPTICAL (PROPOSED)

INTERFACES: FACILITY/VE MECHANICAL

55

INTERFACES: FACILITY/VE MECHANICAL (CONT'D)

INTERFACES: LSC OPTICAL/MECHANICAL

TOP OPEN ISSUES FOR PRELIMINARY DESIGN PHASE

- Control sensor choice for Acquisition mode
- Stack yaw ("corkscrew") drift
- WFS optical "plant" frequency response
- Real Acquisition Alignment tolerance for length lock

