THE FMI ALIGNMENT EFFORT

Daniel Sigg, Nergis Mavalvala Detector Meeting, June 23, 1996

Goal

Establishing a wavefront sensing scheme for the LIGO alignment sensing and control (ASC).

O Modal Model

Mathematical tool for describing angular misalignments in gravitational-wave interferometers.

O FMI Experiment

Verify the wavefront alignment scheme Develop and characterize the wavefront sensing hardware

MODAL MODEL

Angular misalignments excite higher-order transverse modes

□ Modal Space

Fields	Vector
Free space propagation	Operator
Mirror Distortions	Operator
Optical Train	Operator1 • Operator2 •

Detection Scheme

- Based on Pound-Drever-Hall and Schnupp locking techniques.
- Beating of a higher-order mode against the TEM₀₀
 □ spatial map of this higher-order mode.
- O Segmented photodetector

RULES OF THUMB FOR ANGULAR MISALIGNMENT

 \Box TEM₁₀ amplitude \propto Misalignment angle.

□ Wavefront sensor measures TEM₁₀ amplitude.

Distinguishing cavity input and rear mirrors

- O Additional Guoy phase shift for TEM₁₀ excited in the cavity.
- TEM₁₀ generated by a resonant field shows no distinction between input and rear mirrors.
- O Non-resonant fields see the input mirror only.
- O need TEM₀₀ of resonant field at detection port.
- O no distinction for highly degenerate cavity!

Double cavity: special case.

WAVEFRONT SENSOR MEASUREMENT

$$WFS_{i}(t, \eta, \Theta) = 2J_{0}(\Gamma)J_{1}(\Gamma)P_{i}$$
$$\sum_{j} A_{ij}\Theta_{j}\cos(\eta - \eta_{ij})\cos(\omega_{m}t + \phi_{ij})$$

 WFS_i wavefront sensor signal at i-th port Θ_j misalignment angle for j-th dof A_{ij} alignment matrix η Guoy phase η_{ij}, ϕ_{ij} intrinsic Guoy and RF phases P_i power on the detector ω_m, Γ modulation frequency and depth

WAVEFRONT SENSOR MEASUREMENT (2)

POSSIBLE ALIGNMENT MATRIX

		pha	ises	angular degrees of freedom				
	port	rf	Guoy	ΔΕΤΜ	ΔΙΤΜ	ETM	ITM	RM
1	dark port, CR	Q	80°	51.9	50.4	0	10	0
2	dark port, SC	Q	-12°	0	13.5	0	0	0
3	recycling, CR	I	87 °	0	0	105	219	-31.4
4	reflection, SCNR	I	-89°	0	0	0	2.51	-1.73
5	reflection, SCNR	I	-28°	0	0	0	-1.20	3.61

		pha	ises	angular degrees of freedom				
	port	rf	Guoy	ΔΕΤΜ	ΔΙΤΜ	ETM	ITM	RM
1	dark port	Q	90°	-21.4	-9.77	0	0	0
2	reflection	Q	145°	0.039	-2.31	0	0	0
3	reflection	I	145°	0	0	-0.04	13.1	-18.4
4	reflection, NR	I	90°	0	0	-2.19	-0.98	0
5	reflection, NR	I	0 °	0	0	0	0	2.00

MAIN FEATURES OF THE FMI

□ Input Optics

- Frequency shifted subcarrier modulation scheme: carrier sidebands at 59.5 MHz (resonant in recycling cavity) subcarrier at 390 MHz (dark at differential port) subcarrier sidebands at 39 MHz (resonant in recycl. cavity) subcarrier sidebands at 32 MHz (non-resonant)
- O Double-passed AOM
- O Fiber-coupled to interferometer

Actuators

- O Fast PZT using constrained layer damping
- O 20 kHz servo bandwidth

Pointing system

- O Optical lever with a diode laser
- O Sensitivity: ~ 20 V/mrad
- O Noise: 1 μ rad/ \sqrt{Hz} at DC, 1 nrad/ \sqrt{Hz} at 100 Hz

MAIN FEATURES OF THE FMI (2)

Data Acquisition System

- O VME based
- O 128 ADC channels / 16 DAC channels
- O 1 kHz sampling rate
- **O EPICS front-end**
- O Digital servo for alignment control

□ Wavefront Sensor (LIGO prototype)

- O Guoy phase telescope
- Sensor head:
 Quadrant photodiode
 Tuned circuit
 Shot noise limited at ~1 mW light power
- Demodulator board: In- and quad-phase demodulation Implements a voltage-controlled LO phase shifter

WAVEFRONT SENSOR HEAD

DEMODULATOR BOARD

STATUS UPDATE

□thus far ...

- O Modal model simulations for FMI and LIGO
- O Input optics and interferometer construction completed
- All length degrees-of-freedom locked and locking sequence established.
- O Data acquisition system operational
- O Pointing system operational
- O Wavefront sensors fabricated

❑next ...

- O Wavefront sensor testing/calibration/installation
- Measurements: Alignment matrix for a recycled Michelson Alignment matrix for a complete interferometer Large angle limits Suspended interferometer wavefront tests
- O Closed loop control
- O Analysis

