Detector Technical Update

David Shoemaker

10 April 96

Progress over last half-year

- Detector implementation
- Detector research and development

Organized by task groups, then subsystems

- Isolation
 - > Seismic stacks
 - > Suspensions
- Lasers/Optics
 - > Nd:YAG laser
 - Core Optics
- Interferometer Sensing/Control
 - > Length
 - > Alignment
- Control and Data System

Isolation: Seismic stacks

Challenge: make seismic noise negligible above 40 Hz; attenuation of $<10^4$ at 40Hz, Q < 30, materials constraints

Requirements/Interfaces

- · basic requirements determined
- · new measurements of Livingston ground noise
- · detailed requirements under development
- Design Requirements Review: 29 April

Design Study

- · contract with Hytec, Inc. to study passive stacks
- refinements to initial LIGO-generated design
 - > lowering cutoff frequency
 - > reducing weight
- · detailed models, trial designs for springs, overall structure
- single-layer prototype tests to come

Isolation: Suspension

Requirement: actuation and attenuation without Q compromise

Off-line Q measurements on full-scale substrates

• measured values of 6×10^6 ; still refining hanging procedure

40m: first article complete, in off-line tests

- · hanging practice
- · controller tuning
- installation mid-summer

LIGO: refinement of design

- Design Requirement Document, Review: June 95
- · dynamic range of controller, attention to wire attachment
- interfaces with Seismic Isolation, Core Optics
- Preliminary Design Review: May 96

LIGO Suspension Design

LIGO Project 3 of 13 LIGO-G960060-00-D LIGO Project 4 of 13 LIGO-G960060-00-D

Lasers/Optics: Nd:YAG

Challenge: 10 cw output, very low frequency & intensity noise, good spatial quality, high reliability and efficiency

Development of 10 W LIGO laser

- requirements developed (from Argon Laser Reqs)
- · Request for Proposals issued, responses received
- · presently evaluating proposals; selection in mid-April
- vendors propose to meet LIGO schedule (16 month cycle)

In-house development

- need for a moderate-power near-term Nd:YAG source
- use 700 mW commercial laser
- · initial frequency stabilization for characterization of actuators
- · serves several purposes
 - experience with Nd:YAG for LIGO controls design
 - > near-term application in Phase Noise Interferometer
 - \rightarrow loss, scatter, contamination tests at 1.06 μ m
 - > 40m conversion
- parallel build-up of 1.06 μm optics, tools

Lasers/Optics: Core Optics

Challenge: <1 nm rms over 8cm radius net phase front

Requirements/Interfaces/Conceptual Design

- · refinement of models, exploration of design space
- incorporation of constraints/advantages of 1.06 μm
 - > curved/curved arm cavity geometry
 - > allows 25cm × 10 cm substrates (as before)
- DRR 23 Feb 96

Polishing

- · very good responses from vendors
- CSIRO, HDOS show we can meet or exceeded requirements

Metrology

- putting independent program in place with NIST
- · polished substrates to be evaluated

Coating

- interactive development with vendor (REO)
- · measurements of uniformity of coating underway
 - > REO: center frequency measurements
 - > LIGO: anti-reflective coating variations
- · meets requirement radially, but shows azimuthal variations

LIGO Project 5 of 13 ugo-geosoe-ov-b LIGO Project 6 of 13 ugo-geosoe-ov-b

ISC: Length Sensing/Control

Challenge: $10^{-10} \text{rad} / \sqrt{\text{Hz}}$, $10^{-19} \text{m} / \sqrt{\text{Hz}}$, $> 10^{-6}$ m input motion

Adoption of single-frequency readout

- · simpler than carrier/subcarrier scheme
- greater confidence in design due to modeling results

Linear-regime modeling

- · complete small-signal analysis completed
 - > detailed shot-noise inputs for all sensor
 - > up-to-date seismic noise model
 - > coupling of laser noise (frequency, intensity)

Acquisition modeling

• extension of present model to complete interferometer

LIGO Project 7 of 13 LIGO-G960060-00-D

ISC: Suspended Ifo tests

Program to test optical/sensing configuration on 40m

- non-recycled Fabry-Perot Michelson interferometer
 - > extensive effort to understand noise at high frequencies
 - > incremental improvements in noise floor
 - > much more known about noise propagation in system
- preparations for recycling in parallel
 - > optics specified, ordered
 - > servos/sensors specified, in design
- · plan to start conversion to recycling in July

LIGO Project 8 of 13 LIGO-G960060-00-D

ISC: Suspended Ifo tests

Phase Noise Research on the PNI

- · commissioning and first stage of measurements completed
- non-recycled Michelson, Argon laser
 - > noise sources explained at present sensitivity level

- · recycling mirror installed, servo systems being tested
- · measurements during next quarter
- conversion to 1.06 $\mu\,\text{m}$ in mid-summer

ISC: Alignment Sensing/Control

Challenge: <10⁻⁸ rad rms operational alignment

Alignment design refinement

- greater use of Wavefront Sensing (bandwidth, dynamic range)
 - > simplicity
 - > direct measurement/control
 - > less dependence on facility mechanical stability
- · additional modulation on carrier
 - > outcome of Length Sensing working group studies
 - > leads to more robust alignment signals
- Design Requirements Review: June 96

Wavefront Sensor R&D

- · experiment length control in shakedown
 - > all degrees of freedom controlled, but for short times
- wavefront sensor and demodulator development
 - > requirements, design, prototype, layout complete
 - > first articles finished
 - > to be installed also on PNI, 40m

LIGO Project 9 of 13 LIGO-G960060-00-D LIGO Project 10 of 13 LIGO-G960060-00-D

Control and Data System

Challenge: architecture, design, fabrication of all electronics; data and control hard- and soft-ware

Support of laboratory activities

- jump-start on field tests of engineering, human interface
- · current lab projects
 - > integration of CDS Argon laser into 40m
 - > 40m recycling including LIGO reference source
 - > monitoring acquisition in 40m lab
 - > programming for Wavefront data acquisition
 - > layout and fab of Wavefront demodulator boards

Design Requirements/Conceptual Design

- strong effort to collect requirements from Detector
- · basic choices in backbone, protocols, topologies
- Control and Monitor Design Requirements Review: Feb 96
- Vacuum Controls Design Requirements Review: 1 May 96

CDS: Conceptual Design

LIGO Project 11 of 13 LIGO-G960060-00-D LIGO Project 12 of 13 LIGO-G960060-00-D

Technical Update

Detector subsystems well into design process

- learning curve for scientists leveling off
- Design Requirement Documents and Reviews:
 - > Alignment, Suspension, Core Optics, Ar Laser, CDS
 - > Seismic, Length, additional CDS in coming months
- Preliminary Design Review for Suspension in June

Detector Systems flowdown operative in Design process

- · allocation of noise sources
- · resolution of interfaces
- · noise modeling of resulting flowdown starting

Outside contractors helping keep the pace

- · Hytec (Seismic isolation stacks)
- CSIRO, HDOS, NIST, REO (Core Optics polishing, coating, measurement)
- JPL (Length Sense/Control), Cygnus (Alignment Sense/ Control)
- Soon: Nd:YAG 10W Laser

LIGO Project

13 of 13

LIGO-G960060-00-D