Aspen Winter Conference on Gravitational Waves and their Detection

Conference Summary

David Shoemaker 28 January 1995

Acoustic detectors

State of the art

- 3 to 8 mK noise temperature
- 6×10^{-19} burst sensitivity
- data gaussian to 8 to 10 σ
- long coincident data runs---Allegro cold from 91 to Jan 95
- real progress in sensitivity in parallel

Lessons

- detector quality determined by statistics of data
- real work is in eliminating non-gaussian and non-stationary noise
- real virtues in many detectors
- spectral analysis only gives one measure of performance

Future

- adiabatic changes in readout (improved squids)
- spherical 'bars': possibly the Mona Lisa of acoustic detectors
- correlation with interferometers---stochastic background searches

Interferometer Projects

AIGO	TAMA	GEO-600	VIRGO	LIGO	LISA
Australia, (India, China, Argentina)		Germany, Great Britain	France, Italy	USA	Europe, (NASA)
Australia	Japan	Germany	Italy	Washington, Louisiana	Space
			Low frequencies	Multiple interferometers	Very low frequencies
400 m	300 m	600 m	3 km	4 km	5×10^6 m
planned	1995	1994	1995	1994	planned
1998	1998	1998	2000	2000	2015

Interferometer Subsystems, Technology

Seismic Isolation

- Passive systems: multiple pendulums (ANU, Pisa)
- Active systems (JILA)

Suspensions

- Low frequency (ANU)
- Double suspensions and control systems (Glasgow, Garching)

Thermal Noise

- Demonstration of Fluctuation-Dissipation theorem (Syracuse)
- Direct measurement of internal mode thermal noise (Caltech)

Optics

- Relationship of performance and optics quality (MIT)
- Availability of polishing technology

Lasers

• Nd-YAG (Stanford)

Interferometer Technologies...

Configurations

- 'Ordinary' but under control and aligned
- Recycling (power, signal, resonant, sloshing, chirped, coupled...)
- Sleeping beauties (triangle, delay line, Schellenbaum...)
- Diffractive princes (LOTS of possibilities)
- LISA: Practical but ambitious systems for space-based interferometers
- Satellite ranging

Ultimate Limits

- Squeezing: successes but reasons for pessimism
- Quantum non-demolition: successes and reasons for optimism

Infrastructure, engineering, reliability

• instruments worthless without them

Sources and how to detect them

Stochastic background

- Cosmic background, strings, or just too many white dwarfs
- LISA: spectral analysis of stationary noise
- Acoustic detectors, possibly with interferometers (narrow band)

Coalescing binaries

- More sky surveyed...not more binaries
- Optimal filtering: Knowledge is power
- With LIGO/VIRGO, $\delta\theta \approx 5$ degrees, $\frac{\delta D}{D} = 25\%$, $\frac{\delta M}{M} \approx 0.1\%$

Grand Challenge

- Need teraflop, teraword, terrible computers
- scheduled for 1 Jan 1999

Rapidly rotating stellar core

- axisymmetric, or two different bar-shaped scenarios
- Three possibilities from a simple problem

Low-Frequency sources

- massive BH binaries: mergers, seeds, collapse...
- can there be scenarios which do NOT give signals for LISA?

Data Analysis

Characterization of Noise

- spectrum, but also: histogram, kurtosis, etc.
- apply noise analysis to data, now, even from prototypes
- should not reinvent field: signal analysis experts

Characterization of detection

- agree in advance!
- multi-detector coincidence vs. multi instrument correlation
- detector optimization is a data analysis problem
- if the analysis is not good, have to build more sensitive instrument

LIGO Research Community

A structure to

- maximize the scientific opportunities with LIGO, to communicate data and coordinate analysis
- define modes of collaboration for research using LIGO, other detectors
- advise LIGO on the review of LIGO-related research proposals
- set up a bi-directional communication between LIGO and the research community

Process

- email to wide community of possible participants
- solicitation of comments, and nominations for the Nominating Committee for PPAC by Feb. 15, 1995
- provisional adoption of draft charter

International Gravitational Network

- international discussion and communication of global issues
- definition of data protocols, coordination of detector observational periods, and joint technology sharing
- requires agreements among projects
- recommend that leaders assemble during 1995 to initiate formation of an International Gravitational Network
- target: GR14 (Florence) in August, 1995