NSF Review

LIGO Progress,
Status and Plans
Gary Sanders
May 22, 1995

1 of 29

LIGO-G950020-00-M

Transition to Construction

- LIGO has transitioned from an R&D/conceptual design activity to a construction project.
- Industry is now designing all major facility systems.
 - >> Vacuum Equipment
 - >> Beam Tube
 - >> Beam Tube Enclosure
 - >> Conventional Construction
- The Detector Group
 - >> Detector Implementation Plan
 - >> consolidating design requirements
 - >> initiating early industrialization
- The R&D Group
 - >> final tasks needed for the baseline freeze
 - >> exploiting our prototypes as testbeds for LIGO systems.

2 of 29

LIGO-G950020-00-M

Power Recycled Fabry-Perot Interferometer

R&D Progress

- 40 Meter Interferometer at Caltech
 - >> Mark II upgrade substantially improved <u>seismic</u> isolation during 1992
 - >> During 1994, composite test masses were replaced by "high Q" monolithic test masses to improve displacement noise performance in region limited by internal thermal noise of test masses
 - This step was completed since the September, 1994 NSF review and it yielded predicted improvement in noise performance
- 5 Meter Interferometer at MIT
 - >> High stored power will be used to measure the noise limits due to optical phase noise. We expect a sensitivity better than 10⁻¹⁰ Hz^{-1/2}.
 - >> MIT group has suspended optics and is on schedule in the construction

3 of 29

LIGO-G950020-00-M

4 of 29

Progress in Displacement Noise R&D

Mark II 40 Meter Interferometer

LIGO

5 of 29

LIGO-G950020-00-M

LIGO

6 of 29

LIGO-G950020-00-M

Mark I vs. Mark II Seismic Isolation

PHOTO NOT INCLUDED IN THIS COPY

Composite vs. Monolithic Test Mass

PHOTO NOT INCLUDED IN THIS COPY

7 of 29

Initial Phase Noise Interferometer

LIGO

9 of 29

LIGO-G950020-00-M

R&D Plans

- Recombination in progress now
 - >> 40 Meter Prototype reconfiguration and realignment done
 - >> Shakedown and first attempts to lock arms in progress
- New <u>Prestabilized Laser</u> with <u>LIGO Controls</u> under construction for installation in 40 Meter
- 12 Meter Mode Cleaner passed its performance review in April
 - >> Move into 40 Meter Prototype scheduled later this year
- New <u>suspension</u> to be tested later this year
- · Power Recycling scheduled early next year
- Wavefront sensing with Fixed Mass Interferometer at MIT in progress
- Increased attention to operational reliability and procedures development needed for LIGO operational capability

10 of 29

LIGO-G950020-00-M

Detector Progress

- Detector Implementation Plan approved by the Project in January
 - >> All design, fabrication activities included
 - >> Resources assigned
- Prestabilized Laser Design Requirements Review held
- Alignment Sensing and Control Design Requirements Review held
- Core Optics Coating trial with industry initiated
 >> REO
- Core Optics Polishing trial with industry initiated
 - >> Hughes Danbury Optical Systems
 - >> CSIRO

40 Meter Optic vs. LIGO Optic

PHOTO NOT INCLUDED IN THIS COPY

11 of 29

LIGO-G950020-00-M

12 of 29

Facilities Progress

Vacuum Equipment

- >> Consists of vacuum pumps, gate valves, manual controls, gauges and large detector vacuum chambers
- >> Science Review of System Specification held and all action items required for Preliminary Design have been resolved
 - >> Interfaces with Control and Data System elaborated
- >> Acquisition Planning exercise selected phased contracting methodology. Strategy:
- Two Phase A contractors to be selected to carry out
 Preliminary Design and to provide fixed price proposal for fabrication/installation
 - One contractor to be selected for fixed price Phase B
- >> Phase A contracts have been awarded and design is in progress
 - Chicago Bridge & Iron
 - Process Systems International
 - >> Phase B downselection scheduled by July

13 of 29

LIGO-G950020-00-M

14 of 29

Test Mass Chamber

PHOTO NOT INCLUDED IN THIS COPY

LIGO-G950020-00-M

Facilities Progress

· Beam Tube

- >> <u>Phase A</u> Design/Qualification Test contract now completed with Chicago Bridge & Iron
 - >> Final Design Review completed in 1994
 - >> Qualification Test completed successfully
- Significant augmentation of the cleaning process developed during Qualification Test
 - >> Modified Final Design package delivered this week
- ** Contract includes option for Caltech to negotiate Phase B fabrication/installation
 - >> Acquisition Planning exercise carried out for Phase B
 - Introduce competitive pressures to lower Phase B cost
 - Treat high risk tasks outside of fixed price approach
- >> Decision made to request CB&I proposal and offer early negotiations prior to "go/no go" compete decision
- >> RFP and Notice of Intent to Exercise Option to be released June 1

15 of 29

LIGO-G950020-00-M

View Through the Beam Tube

PHOTO NOT INCLUDED IN THIS COPY

Beam Tube Section

Expansion Joint and Beam Tube Wrapped for Bakeout

PHOTO NOT INCLUDED IN THIS COPY

PHOTO NOT INCLUDED IN THIS COPY

17 of 29

LIGO-G950020-00-M

18 of 29

LIGO-G950020-00-M

Facilities Progress

Beam Tube Enclosure

- >> Required for elimination of wind noise, acoustic, thermal and moisture isolation and protection from projectiles (hail) and bullets
 - >> Conceptual design contracted with Concepts in Concrete
- >> Parsons conceptual design reviewed and trade study recommended
- Enclosure big enough to accommodate personnel access vs. minimal enclosure requiring removal for access
- Standard slab foundation vs. minimal foundation with piling support for beam tube
 - >> Trade study results
 - Cost reductions smaller than anticipated
 - Life cycle enclosure removal costs and risks very large
- >> Parsons instructed to design personnel accessible enclosure and to study slab type constructability for Louisiana before selection of slab type
 - >>On schedule for enclosure/slab construction package

19 of 29

LIGO-G950020-00-M

Enclosure Alternate 1

20 of 29

Enclosure Alternate 2

Enclosure Alternate 4

LIGO

21 of 29

LIGO-G950020-00-M

22 of 29

LIGO-G950020-00-M

Facilities Progress

Conventional Construction

- >> Washington
 - Rough grading completed
 - Site settling in progress

>> Louisiana

- Site purchased and leased by NSF
- Site characterization completed
- Access road design initiated by Louisiana
- State of Louisiana funding being appropriated
- "Clearing and Grubbing" contractor selected and contract submitted for NSF review. Clearing planned by month end.

- Pipeline crossing plans nearly complete for 2 of 3 pipelines

- Rough grading design initiated

LIGO Aerial Painting

PHOTO NOT INCLUDED IN THIS COPY

23 of 29

LIGO-G950020-00-M

24 of 29

Rough Grading in Hanford

Current Hanford Aerial View

PHOTO NOT INCLUDED IN THIS COPY

PHOTO NOT INCLUDED IN THIS COPY

25 of 29

LIGO-G950020-00-M

26 of 29

LIGO-G950020-00-M

Louisiana Site

PHOTO NOT INCLUDED IN THIS COPY

Facilities Progress

Conventional Construction

- >> Architect/Engineer Ralph M. Parsons Company
 - Design initiated January with kickoff attended by NSF
 - Completed 30% conceptual design DCCD review
- Completed 60% design concept presentation (NSF attendance)
 - Completed 90% design concept review
 - Building trade study in progress
 - Conceptual design to be approved by July

Parsons' Facility Solid Models

PHOTO NOT INCLUDED IN THIS COPY

29 of 29