Sensitivity Limits due to Photon Statistics:

Shot noise, Other 'optical' noise sources, and Optical configurations

David Shoemaker,

LIGO Project

20 April 94

A.P.S.

1190 G940002-00-D

Noise Budget For First LIGO Detectors

- 5 Watt Laser
- Mirror Losses 50 ppm
- Recycling Factor of 30
- 10 kg Test Masses
- Suspension Q=10⁷

Quantum limit for interferometer performance

Two important noise terms, inverse dependence on light power:

- Shot noise
 - o fluctuations in number of photons/sec
 - o equivalently, shot noise in photocurrent

$$\widetilde{h} = \frac{T\lambda}{8\pi L} \sqrt{\frac{\mathrm{h}\nu}{P}}$$

- Radiation pressure
 - o uncorrelated in arms
 - o imparts random momentum to test masses

$$\widetilde{h} = \frac{4}{cTLm\omega^2} \sqrt{Ph\nu}$$

o minimum for

$$P_{\rm opt} = \frac{L^2 \lambda m \omega^4}{2\pi c}$$

o gives quantum limited sensitivity of

$$\widetilde{h}_{\mathrm{QL}}(f) = \frac{1}{2\pi Lf} \sqrt{\frac{4\mathrm{h}}{\pi m}}$$

 $\widetilde{h}_{\rm QL} = 5 \times 10^{-24} \ {\rm Hz}^{-\frac{1}{2}}$ for L=4 km, f=100 Hz, m=10 kg, $\lambda=514$ nm, $P=7{\rm kW}$; a problem for second (or third?) generation antennas.

For now, wish to maximize circulating power.

Demonstration of shot noise in LIGO 40m prototype

Demonstration of shot noise in Max Planck prototype

- Simple Michelson layout
 - o reduces position sensitivity
 - o eases test of splitting of fringe

- Full-power test planned in LIGO 5m prototype
 - o demonstration of LIGO shot noise sensitivity
 - development of technology

Recycling: increasing the effective circulating power

- form resonant cavity of interferometer, recycling mirror
 - o interferometer antisymmetric output held on 'dark' fringe
- circulating power on beamsplitter determines shot noise sensitivity
 'P' to be used in shot noise formula

Recycling gain
$$=$$
 $\frac{\text{needed circulating power}}{\text{available laser power}}$

- \bullet limited by losses in recycling cavity; $Gain_{max} = 1/Loss$
 - o constrains arm losses
- can reach initial LIGO sensitivity goal with
 - laser input power of P_{laser}=2 W
 - \circ recycling gain of $G_{\rm rec} = 30$
- does not change interferometer frequency response
- adds constraints to
 - o interferometer operating point (dark fringe)
 - o control system (additional degrees of freedom)
 - o optical system (multiple constraints on gaussian beam parameters)

Folding of interferometer arms: Fabry-Perot cavities

- increases the optical phase change from a given GW strain
 - o for small motions ($\ll \lambda$) near optical resonance ($L = n\lambda/2$)

frequency

- corner frequency determined by mirror characteristics, length
- lower corner frequency, more effective bounces advantageous until
 - o losses to recycling cavity become too large, or
 - o other noise sources (e.g., seismic) completely dominate
- LIGO: L = 4 km, $T \approx 3\%$, $f_0 = 100$ Hz
- adds resonance constraint
- adds optical matching requirement

Interferometer degrees of freedom: readout and control

- Michelson with Fabry-Perot transducers and Power Recycling
- must readout GW with shot-noise limited sensitivity
- must hold Michelson on dark fringe
- must hold FP cavities and recycling cavity on resonance
- break system up into four DOF: differential and common modes
 - o Gravitational wave signal: $L_a L_b$
 - \circ average light frequency correct: $L_a + L_b$
 - \circ Michelson dark fringe: $l_a l_b$
 - \circ recycling cavity resonance: $l_a + l_b$

- synchronous modulation around the dark fringe
 - o yields shot noise limited detection
 - o uses phase modulators in arms of interferometer
 - o not technically feasible for LIGO-like powers
- alternative: asymmetrize interferometer
 - \circ (move $n \times \lambda/2$)
 - o put phase modulator before interferometer
 - o still on dark fringe for carrier
 - o choose modulation frequency to be on bright fringe
 - $\circ \lambda_{mod} = (l_a l_b)/4$

Common mode readout means

- use synchronous modulation frequency higher than cavity f_0
 - \circ approximation of carrier and 2 symmetric sidebands
 - o carrier resonant in FP cavity
 - sidebands reflected (off resonance)
- terms at f_{mod} proportional to distance from resonance
 - \circ for $\Delta x \ll \lambda$

Separating near mirrors from far mirrors

- Problem: how to look 'inside' recycling cavity?
- establish 'subcarrier':
 - resonant in recycling cavity
 - o off resonance of arm cavities
- senses only near mirror motion

Summary of initial LIGO interferometer configuration

- Michelson
 - sensitive to differential excitation from GW
- Fabry Perot transducers to increase phase per strain
 - o gives frequency response to interferometer
- recycling of input light to obtain needed shot-noise precision
- multiple light frequencies, phase modulations to read out lengths
- fundamental limits to sensing (shot, photon recoil)

Technical limitations to sensitivity

- mirror motions (seismic, thermal)
- imperfect optics
- length and alignment control systems
- laser light source
- residual gas

Imperfect optics, imperfect control

What does optical system look like?

- 25 cm diameter, 10 cm thick test masses
- at ends of a 1m diameter, 4 km long tunnel
- typical angle: $4 \text{cm}/4 \text{km} = 10 \mu \text{rad}$
- interferometer designed to work with TEM₀₀ mode
 beam waist 2.5 cm, expands to 4 cm at far mirror

Mechanisms

- Light scattered out from arm cavities
 - dust, contamination on surfaces
 - o 'short' (<1 cm) surface irregularities
- Absorption in mirror surface
 - o conversion of laser light to heat
- Light scattered into higher spatial modes of cavities
 - scatter out of TEM₀₀ mode, but onto far mirror
 - o due to 'long' (>1 cm) surface irregularities
 - o excitation of higher order optical spatial modes
- Limits to sensitivity due to
 - o loss of light from system
 - o degradation of interferometer contrast
 - o rejection of light by system
- Scattering from tube wall, then recombination
 - o adds spurious vector, random phase
 - o gives interferometric sensitivity to wall motions
- Lead to requirements on mirror figure, absorption
- typical numbers:
 - unintentional transmission $\approx 10^{-5}$
 - \circ absorptive losses $\approx 10^{-5}$
 - \circ rms mirror figure $\approx \lambda/500$
- also, tube wall treatment (baffles)
- Status
 - o present state-of-the-art polishing, metrology required
 - o large surface dielectric coating technology pushed

Length and alignment control

Length

- Deviations from desired lengths can lead to
 - o reduced circulating power in recycling cavity
 - o effective mismatching of two arm cavities
 - o loss of light from dark port
- leads to requirements on
 - o servo system gain
 - o sensor signal-to-noise

- \circ arm lengths must be held to $\approx 10^{-12}$ m
- (light $\lambda = 5 \times 10^{-7} \text{m}$; GW $x \approx 10^{-19} \text{ m}/\sqrt{\text{Hz}}$)

Alignment

- Optical system supports Gaussian spatial modes
 - designed to work with TEM₀₀ exclusively
 - misalignments excite TEM_{nm}
 - o critical angle determined by cavity geometry
- requires sensing system, resembling length control
- typical number:
 - test mass mirrors must be held to $\approx 10^{-8}$ rad
 - \circ (about 1/2 mm over 4 km)
- Status
 - o complete length prototype control systems demonstrated (see talks by Giaime, Regehr this afternoon)
 - o alignment system principle tested, system tests starting

TEM 00

TEM₀₁

Laser source

- Light source: Argon-ion gas laser
 - o modified commercial system
 - o 514 nm, green wavelength
- Passive spatial, frequency filtering
 - o triangular Fabry-Perot used in transmission
- Power
 - o to meet shot noise sensitivity requirement
 - o 2 W at input to interferometer

Scattering from residual gas

- Gas remaining in vacuum system
 - o polarizability of molecules
 - o thermal velocities
 - \circ statistical variation in total number (\sqrt{N})
 - →fluctuation in apparent path length
- Gives requirements for vacuum system

Sensitivities due to interferometer asymmetries

- Perfectly symmetric system has no sensitivity to
 - o frequency fluctuations
 - o power fluctuations
 - o position and beam geometry fluctuations
- Asymmetries exist:
 - intentional (readout system)
 - o unintentional (mirror differences: loss, figure)
 - o recombination of light with different histories
- Frequency stability
 - o simple mechanism: different arm corner frequencies
 - short term stability needed (20 msec and shorter)
 - \circ rough number: 10^{-5} Hz/ $\sqrt{\text{Hz}}$ at input to interferometer
- Power stability
 - o simple mechanism: asymmetry in beamsplitter
 - o more subtle: imperfect interferometer dark fringe
 - \circ rough number: $10^{-6}dI/I$ at input to interferometer
- position stability
 - o simple mechanism: misalignment to interferometer
 - \circ more subtle: coupling to different arm TEM_{nm}
 - \circ rough number: 10^{-6} excitation at 100 Hz
- Status:
 - o laser engineered
 - o mode cleaner nearing installation

Where do we stand?

- Shot noise
 - o demonstration at various power levels
 - full-power small-scale demonstration in preparation
- Configuration and control
 - o extensive prototype tests and models performed
 - o complete system prototype in preparation
- Optics
 - specifications developed
 - o industry samples for substrates exist
 - o coating challenge
- Laser and input optics
 - working systems on prototype
 - second generation to be installed
- Residual gas pressure fluctuations
 - o models verified
 - o vacuum system design consistent

So:

- Work to do
- Know how to get it done