

Mechanical Mode Damping for Parametric Instability Control

Matt Evans Jonathan Soto Gaviard Dennis Coyne Peter Fritschel

LIGO-G080541-00-Z

Motivation for focusing on mechanical mode Qs

LIGO

- □ Recall: parametric gain is proportional to mechanical mode Q_m: $R = \frac{2P_{opt}Q_m}{ML\omega_m^2 c} \times \text{optical gain}$
- Past work looked at 'broadband' dampers on the test mass barrel (Zhao et al., UWA)
 - > Uniform barrel coating; localized damping ring around barrel
 - Not very satisfying effectiveness: thermal noise increased by 10% (100 Hz), but mode Qs still several million
- Want a more frequency selective approach
 - Active damping using the test mass actuators (electro-static drive)
 - Passive damping using added tuned mass dampers

LIGO Active damping with the electrostatic drive (ESD)

□ Basic idea:

- sense the mechanical mode with the interferometer signal, apply a feedback damping force with the ESD
- MIT ponderomotive experiment has a PI at 28kHz: stabilized with feedback to the mirror or the laser

□ First question:

Does the ESD have enough range to sufficiently damp the mechanical modes?

3

LIGO ESD mode damping **Required force:** modal mode rms modal thermal $F_{ESD} = \frac{\omega_m^2 \cdot M_m}{\Gamma_m \cdot Q_m} \cdot x_m^{rms} = \frac{\omega_m}{\Gamma_m \cdot Q_m} \cdot \sqrt{M_m k_B T}$ overlap damped w/ESD $F_{ESD} = 400 n N \left(\frac{f_m}{30 \,\mathrm{kHz}}\right) \left(\frac{10^5}{O}\right) \left(\frac{10^{-3}}{\Gamma}\right) \left(\frac{M_m}{10 \,\mathrm{kg}}\right)^{1/2}$

Available ESD force

- > 200 micro-Newton peak, acquisition mode
- Few micro-Newtons in low-noise mode

Dynamic Absorbers

Consider the addition of a number of discrete, idealized dynamic dampers to the Test Mass

Dynamic Absorbers

The effect of the dynamic dampers can be addressed as the pairwise interaction of each damper and each eigenmode of the test mass

8

Resistively shunted piezoelectric damper

"Damping of structural vibrations with piezoelectric materials and passive electrical networks", Hagood and von Flotow, J Sound & Vib., 1991.

Selection of acoustical modes

- Determine which acoustical modes might be problematic, so we don't always have to look at all ~10,000 modes between 10-100 kHz
- □ Calculate parametric gain R for a single arm cavity:
 - Include Hermite-Gauss modes up to order m+n=8
 - Approximate optical mode diffraction loss as 2x clipping loss
 - Artificially widen the cavity optical modes (but don't lower their Q) to account for uncertainty in mirror radii of curvature (used dR = +/- 10m)
 - Take acoustic mode Q = 10 million
 - Accept all modes with R greater than 0.1
 - End up with 675 modes between 10-90 kHz

Caveat: higher frequencies need to be redone with higher resolution FEA

Conceptual damper design

Two piezo-dampers appears to be sufficient

Mounted on the barrel of the TM

Damper mass = 10 gm; f = 20 kHz & 50 kHz; k² = 0.5

Piezo damper details

Thermal noise impact

- Combination of resonant design, loss function of the piezo, and the physical location, leads to negligible thermal noise impact due to piezo damping
- More important with be TM surface strain energy coupling to damper materials and bonds: this needs to be estimated

Practical design: it's essentially a piezo-electric accelerometer

- Tri-axial sensitivity may be important
- Need a rigid, vacuum-compatible structure

