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LIGO  Motivation for focusing on
mechanical mode Qs

O Recall: parametric gain is proportional to mechanical

mode Q,,: P O 10-100 million

R = —2=" w« optical gain
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QO Past work looked at ‘broadband’ dampers on the test
mass barrel (Zhao et al., UWA)

» Uniform barrel coating; localized damping ring around barrel

» Not very satisfying effectiveness: thermal noise increased by 10%
(100 Hz), but mode Qs still several million

0 Want a more frequency selective approach
» Active damping using the test mass actuators (electro-static drive)
» Passive damping using added tuned mass dampers




LiGo Active damping with the electro-
static drive (ESD)
0 Basic idea:

» sense the mechanical mode with the interferometer signal, apply a
feedback damping force with the ESD

» MIT ponderomotive experiment has a Pl at 28kHz: stabilized with
feedback to the mirror or the laser

a First question:
» Does the ESD have enough range to sufficiently damp the

mechanical modes? .l \
ESD pattern, ETM T " A

ESD]\ // — zi ”\ p #

ESD, ¥ \ \ |

ESD, | S / / |

0 |

ESD, \L i N

ESD; - . ‘ |
Radial
S i

Sy ESD




Bao ESD mode damping

0 Required force:
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Q Available ESD force

» 200 micro-Newton peak, acquisition mode
» Few micro-Newtons in low-noise mode




LIGO

ESD mode damping, cont'd

Calculate overlap with all acoustic modes & force
required to reduce Q to 200,000
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LIGO

Passive mode damping

Damping resonator:
Stiffness and damping are

T est frequency dependent

Mass ‘ 5 ‘
AN

Q Toy model to illstrate
potential effectiveness
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1 DOF ‘test mass’, 1 kg
Damper mass: 1 gm
Damper tuned to 25 kHz

Damper is coupled 100% to
test mass mode

Damper properties that of a
resistively shunted piezo

Damped Q

Frequency (H2
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Bieo Dynamic Absorbers

Q Consider the addition of a number of discrete, idealized dynamic
dampers to the Test Mass

IDEALIZED
DYNAMIC DAMPER

SPRING

TEST MASS
WITH DISCRETE, SMALL MASS
DAMPERS ON BARREL




LIGO
Dynamic Absorbers

Q The effect of the dynamic dampers can be addressed
as the pairwise interaction of each damper and each
eigenmode of the test mass

i -u

DAMPER 1 DAMPER 2 DAMPER 3

ETC.




25l Resistively shunted piezoelectric damper

‘Damping of structural vibrations with piezoelectric materials and passive electrical
networks”, Hagood and von Flotow, J Sound & Vib., 1991.
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LIGO . .
Selection of acoustical modes

QO Determine which acoustical modes might be
problematic, so we don’t always have to look at all
~10,000 modes between 10-100 kHz

a Calculate parametric gain R for a single arm cavity:
» Include Hermite-Gauss modes up to order m+n=8
» Approximate optical mode diffraction loss as 2x clipping loss

> Artificially widen the cavity optical modes (but don’t lower their Q) to
account for uncertainty in mirror radii of curvature (used dR = +/- 10m)

» Take acoustic mode Q = 10 million
» Accept all modes with R greater than 0.1

» End up with 675 modes between 10-90 kHz
% Caveat: higher frequencies need to be redone with higher resolution FEA
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LIGO

Parametric gain R

Conceptual damper design

QO Two piezo-dampers appears to be sufficient
» Mounted on the barrel of the TM
» Damper mass = 10 gm; f = 20 kHz & 50 kHz; k? = 0.5
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LIGO
Piezo damper details

Q Thermal noise impact

» Combination of resonant design, loss function of the piezo, and the

physical location, leads to negligible thermal noise impact due to
piezo damping

» More important with be TM surface strain energy coupling to
damper materials and bonds: this needs to be estimated
QO Practical design: it’s essentially a piezo-electric
accelerometer

. INTERNAL
> Tri-axial sensitivity may be - o ELECTRONICS
important

.. ) PIEZO-ELECTRIC MASS
» Need a rigid, vacuum-compatible CRYSTAL — 3

t— FRE-L{OADING
structure

RETAINING RIMCG

Shear type piezo-electric accelerometer

12




LIGO
Plans

Q Initial LIGO test mass and suspension test

» Try damping a couple of ~10 kHz modes from a Q of a million to a
~100,000, using a piezo-damper (with a commercial
accelerometer)

O LASTI test mass, suspended in the quad suspension
with glass fibers (to be installed)
» Measure internal mode Qs
» Try damping Qs using the electro-static drive
> Piezo-damper ??
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