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Motivation for focusing on
mechanical mode Qs

 Recall: parametric gain is proportional to mechanical
mode Qm:

 Past work looked at ʻbroadbandʼ dampers on the test
mass barrel (Zhao et al., UWA)
 Uniform barrel coating; localized damping ring around barrel
 Not very satisfying effectiveness: thermal noise increased by 10%

(100 Hz), but mode Qs still several million

 Want a more frequency selective approach
 Active damping using the test mass actuators (electro-static drive)
 Passive damping using added tuned mass dampers
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Active damping with the electro-
static drive (ESD)

 Basic idea:
 sense the mechanical mode with the interferometer signal, apply a

feedback damping force with the ESD
 MIT ponderomotive experiment has a PI at 28kHz: stabilized with

feedback to the mirror or the laser

 First question:
 Does the ESD have enough range to sufficiently damp the

mechanical modes?
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ESD mode damping
 Required force:

 Available ESD force
 200 micro-Newton peak, acquisition mode
 Few micro-Newtons in low-noise mode
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ESD mode damping, cont’d
Calculate overlap with all acoustic modes & force

required to reduce Q to 200,000
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Passive mode damping

 Toy model to illstrate
potential effectiveness
 1 DOF ʻtest massʼ, 1 kg
 Damper mass: 1 gm
 Damper tuned to 25 kHz
 Damper is coupled 100% to

test mass mode
 Damper properties that of a

resistively shunted piezo

Test
Mass

Damping resonator:
Stiffness and damping are

frequency dependent
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Dynamic Absorbers
 Consider the addition of a number of discrete, idealized dynamic

dampers to the Test Mass
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Dynamic Absorbers
 The effect of the dynamic dampers can be addressed

as the pairwise interaction of each damper and each
eigenmode of the test mass
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Material loss factor:

Resistively shunted piezoelectric damper
“Damping of structural vibrations with piezoelectric materials and passive electrical

networks”, Hagood and von Flotow, J Sound & Vib., 1991.
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Selection of acoustical modes
 Determine which acoustical modes might be

problematic, so we donʼt always have to look at all
~10,000 modes between 10-100 kHz

 Calculate parametric gain R for a single arm cavity:
 Include Hermite-Gauss modes up to order m+n=8
 Approximate optical mode diffraction loss as 2x clipping loss
 Artificially widen the cavity optical modes (but donʼt lower their Q) to

account for uncertainty in mirror radii of curvature (used dR = +/- 10m)
 Take acoustic mode Q = 10 million
 Accept all modes with R greater than 0.1
 End up with 675 modes between 10-90 kHz

 Caveat: higher frequencies need to be redone with higher resolution FEA
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Conceptual damper design
 Two piezo-dampers appears to be sufficient

 Mounted on the barrel of the TM
 Damper mass = 10 gm; f = 20 kHz & 50 kHz; k2 = 0.5
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Piezo damper details
 Thermal noise impact

 Combination of resonant design, loss function of the piezo, and the
physical location, leads to negligible thermal noise impact due to
piezo damping

 More important with be TM surface strain energy coupling to
damper materials and bonds: this needs to be estimated

 Practical design: itʼs essentially a piezo-electric
accelerometer
 Tri-axial sensitivity may be

important
 Need a rigid, vacuum-compatible

structure
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Plans
 Initial LIGO test mass and suspension test

 Try damping a couple of ~10 kHz modes from a Q of a million to a
~100,000, using a piezo-damper  (with a commercial
accelerometer)

 LASTI test mass, suspended in the quad suspension
with glass fibers (to be installed)
 Measure internal mode Qs
 Try damping Qs using the electro-static drive
 Piezo-damper ??


