

Coherent readout and control of the impedance matching condition in resonant optical systems

David Rabeling, Jong Chow, Malcolm Gray and David McClelland

Readout and control of the impedance matching condition

Impedance matching of resonant optical systems

- Impedance matching for optically resonant systems is a kin to that in electrical systems:
 - In electrical systems impedance matching provides optimum voltage, power, or current transfer.
 - In optical systems impedance matching provides the optimum electric field transfer.
- Interrogation and control of the impedance matching condition offers a new active feedback control technique that has potential applications within GW interferometry, absorption spectroscopy, and quantum optics experiments.

Readout and control of the impedance matching condition

The important parameters that active impedance matching optimises are:

- optimum electric field transfer through the optical system.
- ensures that the reflected electric field is zero and the circulating field to be maximised (assuming a back mirror who's reflectivity is dominated by loss).

and

 by optimising the circulating power, the technique also optimises the signal sensitivity of the system.

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.
- This gives three impedance conditions, described by the mirror reflectivities; Over coupled, Under coupled, and impedance matched

Over coupled

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.
- This gives three impedance conditions, described by the mirror reflectivities; Over coupled, Under coupled, and impedance matched

Under coupled

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.
- This gives three impedance conditions, described by the mirror reflectivities; Over coupled, Under coupled, and impedance matched

- The impedance condition of a cavity is often described by the reflected cavity electric field.
- The reflected cavity electric field is comprised of two terms:
 - The promptly reflected incident electric field E1
 - The circulating leakage electric field E2.
- This gives three impedance conditions, described by the mirror reflectivities; Over coupled, Under coupled, and impedance matched

Cavity transfer functions

Complex reflection coefficient: $|R_{cav}|^2 = |E_{refl}/E_{inc}|^2$ and amplitude response: $Re(R_{cav})$

Varying the impedance coupling

So how can we vary the impedance coupling

- We can use a Michelson as a variable reflectivity mirror.
- Or we can use a Fabry-Perot cavity as a variable reflectivity mirror.

Interrogating the impedance condition

How do we interrogate the impedance coupling

• By monitoring the beat signal between the carrier and a set of amplitude modulated sidebands which are outside the coupled cavity linewidth, we can obtain a signal which is proportional to the reflected electric field amplitude:

$$E_{det} = E_{inc} \exp[i\omega_c t] \left[R_{cav} + \beta/2 \exp[i\omega_m t] + \beta/2 \exp[-i\omega_m t] \right]$$

 Subsequent demodulation allows to extract a signal which is linearly dependent on the reflected amplitude response of the coupled cavity.

Varying the impedance coupling

Bring the etalon from anti-resonance into resonance

Varying the impedance coupling

Bring the etalon from anti-resonance into resonance

Locking the main cavity and scanning the etalon

Locking the main cavity and scanning the etalon

Signal response of the coupled cavity system

Signal response of the coupled cavity system

A signal is injected to investigate the signal response of the system for different coupling.

What can impedance matching locking be used for

- We recently demonstrated the technique for absorption spectroscopy using a fiber ring resonator.
 - J. Chow, I. Littler, D. Rabeling, D. McClelland, and M. Gray, "Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy," Opt. Express 16, 7726-7738 (2008).

What can impedance matching locking be used for

The interrogation of impedance coupling of Micro cavities

Image with permission from Prof. K. Vahala: http://www.vahala.caltech.edu/

What can impedance matching locking be used for

Differential Michelson readout and control

What can impedance matching locking be used for

- We recently demonstrated the technique for absorption spectroscopy using a fiber ring resonator.
 - J. Chow, I. Littler, D. Rabeling, D. McClelland, and M. Gray, "Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy," Opt. Express 16, 7726-7738 (2008).
- Other application:
 - Optimising the circulating power in cavity enhanced SHG.
 - Radiation pressure experiments.

