

# H1 Squeezer Experiment

LVC Meeting, September, 2008

#### ANU, AEI, MIT, CIT and LHO

Ping Koy Lam, Nergis Mavalvala, David McClelland, Roman Schnabel, Daniel Sigg, Henning Vahlbruch and Stan Whitcomb (so far)

G080436-00-D

### **Motivation**

#### □ High power operation in future detectors

- Biggest remaining technical risk (after DC readout)
- Squeezing allows for lower laser power
- Squeezer technology now ready
  - ➤ 7 dB of squeezing down to 10 Hz
  - Has been demonstrated on a bench and on interferometers (40M)

#### **Missing: Low frequency noise demonstration**

- Planned Experiments
  - GEO600: prototype for long baseline interferometers
  - ➤ Hanford H1: low noise at low frequency

LIGO



### Goal of the H1 Squeezer Experiment

- Demonstrate squeezing at low frequency with a high sensitive long baseline interferometer
  - Demonstrate 3 dB of squeezing at frequencies where we are shot noise limited
  - Do not introduce noise at other frequencies!
- Build a squeezer which could be readily turned into an advanced LIGO upgrade
  - Fully engineered optical breadboard
  - Use LIGO type electronics and controls
  - Prepare for long-term reliability investigations
- □ Be ready for a test on H1 after S6

#### //////

#### Squeezed Enhanced LIGO, 30 W







### **Baseline Design**

#### □ Inject into HAM4

- SQT4 opposite of ISCT4
- New advanced LIGO Faraday design
- Optical breadboard 5' x 3'
- IW frequency double Nd:YAG laser
  - Locked to interferometer laser by fiber
- Auxiliary laser for frequency shifted subcarrier
- Optical parametric oscillator (OPO)
  - Doubly resonant
  - Bowtie configuration
  - Non-linear crystal: PPKTP

# LIGO



H1 Squeezer Experiment



### Servos

Fiber stabilization: Feed forward

- □ Main laser offset-locked to probe beam
  - Use initial LIGO FSS
  - Pockels cell & PZT & thermal actuator
- Auxiliary laser offset-locked to main laser
- □ OPO: PDH on green light
  - > PDH on probe beam at carrier frequency for alignment
- Squeezer phase & LO phase
  - Subcarrier sensing
  - Feedback to PZT mirror in green and squeezed light paths
- Homodyne detector for verifying squeezing

### **Electronics Setup**

Compensation networks too fast for digital servos Look-and-feel of a PSL system Remote controls: EtherCat from Beckhoff Same as in Advanced LIGO laser EPICS interface through OPC server Can be used stand-alone with a PC or control panel LIGO electronics wherever possible FSS, CM/MC board, RF distribution, demodulator, phase shifter, … PZT actuators from Physik Instrumente No WFSs!

LIGO





### **OPO Design Summary**



5

- Configuration:
- Crystal:
- Finesses
- Temperature Control:
- Optical Path Length:
- Physical Dimensions:

- Doubly Resonant Bow-Tie Cavity
- PPKTP [Flat-wedge geometry]
- ~  $\mathcal{F}$  = 50 for 1064nm, ~ $\mathcal{F}$  = 100 for 532nm
- Oven and Newport Temperature Controller
- ~ 700mm
- ~ 200 mm x 150mm





# Technical Issues (1)

- OPO: see ANU slide
- □ SHG
  - Diabolo laser system comes with an integrated SHG
  - Need to address internal scattering issues
- Auxiliary lasers
  - Scattering of AOMs too much trouble
  - Freedom to choose subcarrier frequency
  - > A singly-resonant cavity would require a 2<sup>nd</sup> auxiliary laser to lock it
- Fiber stabilization
- In-vacuum AS-port Faraday isolator
  - Develop advanced LIGO unit



# Technical Issues (2)

#### Scattering paths

- Inject opposite ISCT4
- Second in-vacuum Faraday isolator in injection path
- Baffling on the optical breadboard
- □ Long-term reliability

Squeezer will be available after H1 experiment

- SQT4
  - Reuse ISCT3
  - Mount table high to avoid a periscope
- Initial Alignment

Use rejected beam from Faraday in injection path as a fiducial





LIGO



# H1 Squeezer Time Line



Fixed start date for H1 experiment: 2/15/2011
Fixed end date for H1 experiment: 10/3/2011
Better be ready!



### Plan

#### □ Setting up the lasers (MIT/LHO)

- Critical path: building the electronics
- Grad student from MIT
- Electronics support from LHO
- Building and commissioning the OPO (ANU)
  - Grad student from ANU
  - Electronics support from LHO
- Characterization of the squeezer (ANU/LHO)
- Homodyne detector (AEI)
- □ Experiment at H1