Enhancing & Advancing LIGO 4 years of Detector upgrades

> Sam Waldman Feb 28, 2008 University of Maryland

> > LIGO-G080420-00-0

- GW Detectors
- Initial LIGO

- Advanced LIGO
- Enhanced LIGO

(Incidentally disproved the existence of the ether)

LIGO detectors

Waldman Maryland '08

LIGO Hanford: 4 km H1, 2 km H2

LIGO

LIGO Livingston: 4 km L1

LIGO Collaborations

Worldwide network

- GW Detectors
- Initial LIGO

- Advanced LIGO
- Enhanced LIGO

10 10^{3} 10¹ 10^{2} Frequency [Hz] L1 Noisebudget Feb 9, 2007 04:28 UTC

injection/response measurements of noise couplings to test mass displacement

9

Waldman

Noise Budget

injection/response measurements of noise couplings to test mass displacement

Waldman Maryland '08

Facility limits

Suspended mirrors

LIGO

10 kG test masses10" diameter~0.5m pendulum0.76 Hz resonanceVoice coil actuation

Seismic isolation

LIGO

Waldman Maryland '08

Arm cavity response

LIGO

 Arm cavity storage time acts as a single-pole low-pass filter

$$\omega_p = \frac{c \ \pi}{L \ \mathcal{F}}$$

Shot noise limit

Waldman Maryland '08

White shot noise with arm cavity response gives high frequency sensitivity limit

Waldman Maryland '08

Thermal noise

Dissipation in lossy materials (wire, substrate, coating) causes fluctuations in the measured displacement

LIGO

May be limiting noise 40-100 Hz

Real world problems LIGO

T0=30/11/2006 17:56:36

T0=30/11/2006 17:48:04

Avg=1

T0=30/11/2006 17:57:36

Avg=1

On 😓

State (*)

Off

0.6

0.5

0.4

0.3

0.2

0.1

0 -12

Velocity (μm/s)

17

Waldman Maryland '08

More problems

LIGO

😨 🕄 006 Google - Imagery ©2006 DigitalGlobe, TerraMetrics, Map data ©2006 NAVTE

Noise Budget

injection/response measurements of noise couplings to test mass displacement

NS/NS range

~70% duty factor

- GW Detectors
- Initial LIGO

- Advanced LIGO
- Enhanced LIGO

Advanced LIGO

LIGO

Waldman Maryland '08

ugo Quadruple pendulum

Waldman

Maryland '08

- isolation of f⁻⁸
 above a few
 Hz
- f⁻² filtering of actuator noise
- reaction mass
- fused silica suspension
- 40 kG test mass

Waldman Maryland '08

Active isolation

LIGO

Frequency [Hz]

LIGO

SC

Signal recycling

Resonant sideband extraction

Jigo Tailor made response

Waldman

Maryland '08

Advanced LIGO Design Team, M060056

Signal recycling

Resonant sideband extraction

ugoStandard Quantum Limit

Waldman

"Light enforced quantum uncertainty"

ugo Quantum measurement

Waldman

.SC)

Maryland '08

Back action evading LIGO

k'

For a given frequency, the measurement of a specific quadrature of the light at *b*, doesn't perturb the measurement

(at the expense of noise at other frequencies)

Optical Trapping

Corbitt et al. PRL98 2007

LIGO

Waldman

Maryland '08

Jigo Tailor made response

Waldman

Maryland '08

Advanced LIGO Design Team, M060056

aLIGO Sensitivity

Waldman Maryland '08

Image: R Powell

Range per Mass

- GW Detectors
- Initial LIGO

- Advanced LIGO
- Enhanced LIGO

LSC

Advanced LIGO start in mid-2008 (NSB meets end of March)

The next 2 years

- First IFO decommissioned in 2010
- Use Enhanced LIGO to

- Increase exposure 10x
- Minimize aLIGO risk

Waldman Maryland '08

RF readout

LIGO

DC readout

aLIGO prototype

Waldman

LIGO

High power laser

eLIGO Range

Image: R Powell