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GO .. .
Y High power interferometers

* The main Fabry Perot mirrors of advanced
interferometers will be subject to almost a
MW of standing laser light over a Gaussian
spot size of ¥6 cm radius

e high reflectivity coatings absorb >0.25 ppm
 The mirrors receives 0.25 ~ 0.5 W of heating

 The deposited power distribution matches the
stored beam profile
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LIGO .
Thermal lensing problem

e Thermal lensing impede the performance of
the interferometer

* Problem already present in Virgo and LIGO at

lower power, due to the higher absorption of
their mirrors

Pasadena 12 August 2008 Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS, LIGO-G080414-00-R



LIGO .
Present solution

e Thermal Compensation System (TCS)

* shape an annular CO, laser beam and project
it on the mirror periphery

e generate counter thermal lensing

e Problem for Advanced interferometers:

e Radiation pressure and thermoelastic noise on
test mass affect the GW signal
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LIGO

Advanced solution

Hot ring on a compensation plate

Generates negative thermal lensingon an
optical element that does not otherwise affect
the interferometer performance

Technique tested on main mirrors by GEO
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HE9 Advanced Virgo problem

e Very difficult to implement compensation
plate
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LIGO . .
Alternative solution

e Directional cooling of the stored beam spot

e Passive, no forces on the test mass
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LIGO
Directional Radiative Cooling (DRC)

working principle

* Image a cold surface on the laser spot

e The thermally radiated heat from the spot is
absorbed by the cold target

e The cold target, being colder, returns less heat
to the laser spot
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PJEo DRC basics

e DRC takes advantage of the heat emitted by
the spot BECAUSE it is at room temperature

e Simply balances the laser deposited power
with robbed thermal power

e DRC applied in absence of stored power
would generate a cold spot on the mirror
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LIGO
DRC Facts

 The mirror is subject to less thermal radiation
radiation pressure

e actually quieter than without cooling

— (no practical advantage though)
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0 Feasibility of DRC

At room temperature a black body
emits 146W/sr-m?

e Fused silica emissivity is close to that of a
blaCk bOdy 093 engineering toolbox http://www.engineeringtoolbox.com/

e A6 cm radius spot emits 1.64W/sr

Black Body Emission Calculator http://infrared.als.lbl.gov/calculators/bb2001.html

e 0.25-0.5 sr coverage sufficient to

300 K Black & Grey Body Emission

rob the 0.25—0.5W deposited
by the laser spot

5.0
venumbers (cm-1)

W
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http://infrared.als.lbl.gov/calculators/bb2001.html

GO .
“%9 DRC required temperature

e Liquid nitrogen cooled black bodies emit only
0.4% thermal radiation than a room
temperature body

* Li-N, targets would be 99.6% efficient
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LIGO . L. .
How to “direct” radiative cooling

* Proximity cooling
e Baffled cooling

* Imaging cooling

Pasadena 12 August 2008 Hinata Kawamura, Riccardo Desalvo - Radiative cooling TCS, LIGO-G080414-00-R



o Proximity DRC

e A 6.2 cm radius, liquid-nitrogen-cooled disk
placed in front of the test mass would suck
out5.1W |

 Advantages:
— simple solution
 Disadvantages:

— Obstruct the stored light beam
— Suck out too much power
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Jeo Baffled DRC

Tatal hea Aux W]

* Alarge Li-N, target is used

 Pyramidal Baffles restrict the line
of view of the cold target to the
stored beam spot

* Pyramids can be located outside
the beam line outer envelope
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Heat transfer W/im?

LIGO
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* Cooling spot can be
defocussed to mimic a
Gaussian by playing with
longitudinal positioning
of the baffles
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H9 Baffled DRC disadvantages

 Advantages

— Large cooled surface acts as cryo-pump for
organics

e Disadvantages
— Bulky baffle array,

— Large Li-N, cooled target

— Large cooling power requirement, potentially
mechanically noisy
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PJEo Mirror focused DRC

e Oneortwosmall Li-N, il ¢ c
cooled targets focused
with Au plated spherical
mirrors on stored beam
spot

e Mimic Gaussian spot
profile by moving cold
targets out of focus
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PO Controlling DRC power

e Three methods
— Iris control
— Target temperature control

— Hot resistor power balance
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H59 1ris DRC power Control

e The DRC cooling power is directly proportional
to the cold target area used.

* Aniris placed in front of each target would
naturally tune the cooling power

 Disadvantage:

— Mechanical parts in vacuum

Pasadena 12 August 2008 Hinata Kawamura, Riccardo Desalvc



YS9 ris DRC power Control

e Advantage:

— A fixed iris can be used for static cooling power
controls, to match the absorption of individual
coatings and minimizing the dynamic range of
active power controls
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GO
Y Target temperature Control

 The cold target o is separated
from the Li-N, cooling bath “a” by a
thermal resistor s~

e The cold target temperature is D/\A/\/\/W\/\/\/\/\/\
controlled by a resistor “c” |
mounted on the cold target C C

* Disadvantages: B

— Reaction time of several seconds
— Dumps power in thermal bath A

* Advantages:
— Can be used for small corrections
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"“%Hot resistor DRC power Control

 The cold target “a” is placed behind the
mirror focal plane «c’ B

A back shielded resistor «” is placed in
front of the focal plane

 Both defocused to generate Gaussian C
profile, the heating modulatable

e Disadvantages:

— Heating power fluctuations can generate

thermo-elastic noise on the main mirror, CAAN A AR AN
NAANNT NARARMNA

 can use with interferometer off, A [\ AVARAVANAY \\ A\ /\
* need to limit the resistor applied power [VVVVVVVVV VY
 Advantages:

— Fast reaction times (low resistor heat
capacitance)

— Does not dump power in thermal bath
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LIGO Focused RTC
further option

 Hot ring placed in focal plane

is imaged on the mirror, can change mirror
focal length

 Advantage:

— Fine mirror focal length controls even in
absence of beam power

e Disadvantage:

— Possible thermo-elastic noise
o Useful with interferometer off
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LIGO

Experimental measurements
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LIGO
Experimental Setup schematics

Spherical mirror

Liquid N, trap
(or heating lamp)

Separation wall

Thermometer array

External structure
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LIGO /\

Liquid Nitrogen trap

H wees

62.5mm diameter orifice

Dewar

' i k ey r LY
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Parabolic mirror -~
We made the parabolic mirror with super M ‘ 2200
insulation foil glued on a circular sled as
support.

Super insulation
foil

Circular sled
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I"G%uilding and testing the mirror
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LIGO Thermal sensors

lulluullnnn - :
b “( h

2.5cm

Thermometer
array
(LM19)

There were 8 thermal sensors, one broke half way. At the end only 7

thermal sensors left.
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LIGO

_—

Building the box

Lined with black
Felt to absorb
Diffused radiation

Before lining

Hinata

eleolele]




Cold trapset-up

Acquisitioncomputer

Parabolic mirror

Liquid Nitrogen




LIGO 40 W heater Lamp setup
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Acquisition comiputer

P

arabolic mirror

Thermal sensd
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LIGO

durd‘.}':fuc;:u';.\'s (0,1,2,3,4,5,6,71 ]

max3000
"

i

VETaging type
[T

file path

=
] apoend to file? (new file:F) 1
L = =
el | [
ile path (dialog if empty) 2
:

{dialog if empty) 1

scan rate (1000 scansisec)

averaging time
typ 0.2
¥

Acquisition

Write on disk

Averaging e
scan rate 2.0+
10NN eranc/
L5
¥1000.00 i
= 10-
=i
T
E\n\eraging type duration 0.0-
':ﬁ;Linear phrixis
max3000 -0.5-" - . ] 0 ]
etgl =1ﬂ|]-';].0[i 0.0 200.0 -mn.n_ &00.0 B00.0 1.0k
typ 0.2 Time
“1200.00m
ﬁ'_'?. path (d|a'lhr.|f_g_|f._l?r‘l_'lpt'r’] 1 I_‘Ele path (dif'!_“? !ig_r?pty} 2 file path (dialog If ematy) 3 ﬁl_e_pﬂgﬁial?fj if empty) 4

= Deskiop',

ty Desktop'
| risonanza\T2

| risonanza\T1

append to file? (new file:F) 1 zppend to file? (new file:F) 2

file path (dlalog_ if empty) 6

file path (dialog if empty) 5

| P L. Desktop)
Equesk'rou. %' & b

" risonanza\Ts | “risonanza\T6
append to file? (new Fle:F) 3

Pasadena 12 August 2008

append to tie! (new file:F) 6

_______ tq Desktop),
| risonanza\T4
append to file? (new file:F) 4

new file

E..b Desktap),
| risonanza\T3
append to Tile? (new file:F) 3

new file

file path (dialeg If empty) 7

. Desktoph, -

| risonanza\T7

append to fitle? {new file:F) 7

file path {dialog If empty) 8

L Desktop|,

| risonanza\Té

append to file? (new fila:F) 8
new file



LIGO . .
Warming and cooling cycle

Heating lamp on

_ S Cold trap open
Linear rise fit

Linear cooling fit
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LIGO

Energy deposition/extraction

cooling heating
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Exchanged power = Gaussian spot surface S = m2*m4
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LIGO
Results

e Gaussian fit area results
— 1.9W heating => S =0.685x0.02
— Li-N, cooling =>$§=0.056+0.028

 Cooling power

— Measured
1.9 [W] x (0.685/0.056) = 155+78+39 m\W
— Theoretical (all 2= 1) 262 mW
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LIGO .
Conclusions

e Demonstrated the feasibility of

focused radiative cooling

e Directly suck heat from mirror laser spot
e Passive and remote operation (low risk)

 Neutralize thermal lensingwithout perturbing
the test masses

e Remote mirror focal length tuning capabilities
 Cryo pumping of organics impurities
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