

Matthew Pitkin (greatly inspired by Harald Lück's talk from GWADW)

Current sensitivity

Current status Astrowatch

- Watch out for serendipitous local events
- Started following on from end of S5 in October 2007
- Will continue until early 2009
 - aim for ~80% duty factor
 - carry out low risk commissioning work

Duty factor

Online analysis

- Online Q-pipeline analysis running on Astrowatch data
- See http://ldas-jobs.caltech.edu/~qonline/G1

Detector characterisation

- Looking at glitch rates
- Looking at patterns in glitches
- Looking at correlations of glitches between channels
- Characterising the source of glitches

Where now? GEO HF

- Following Astrowatch (some time Spring 2009) upgrade to GEO HF
- Goals
 - Improve sensitivity to give scientifically relevant data in the time of "enhanced" detectors
 - Demonstrate stable and reliable squeezing in a GW detector
 - As with GEO600 it will prototype advanced techniques

Options for GEO HF

- Limited by thermal noise at low frequencies
- But, we can gain at high frequencies (> IkHz)
- Need to reduce shot noise
 - DC readout
 - Use squeezed light
 - Broadband recycling
 - Enhance light power

Frequency [Hz]

DC readout vs heterodyne readout

Changes to GEO setup

- Move auto alignment from detection bench to a new dedicated bench
- Put main photodetector into its own vacuum tank (outside vacuum system at the moment)
- Add an output mode cleaner to reduce higher order modes in detected light

Adding squeezed light

Inject squeezed light to lower shot noise

What can be gained with squeezed light

Power increase

- Currently at 3.5 kW at power recycling mirror
- Increase laser power from 10 W (6 W) to 35 W
- Exchange mode cleaner mirrors to increase throughput by factor of two
- Aim for 35 kW at power recycling mirror

Shot noise for GEO HF vs GEO600

GEO600: 7 kW, RF readout, 550 Hz detuned

GEO HF: 30 kW, DC readout, output mode cleaner, tuned, broadband

GEO HF noise sources

GEO HF vs Enhanced LIGO

Timeline

- Spring 2009
 - DC readout
 - output mode cleaner
 - in vacuum readout
 - squeezed light into output port
- Autumn 2009
 - Increase laser power
 - Exchange main mirrors