Reducing Thermal Noise with Mesa Beams

J. Miller j.miller@physics.gla.ac.uk

Caltech 21/3/2008

Overview

- Why non-Gaussian?
- Mesa beams
- Previous/ ongoing work
- Possible future work
- Other options

Thermal Noise

- Precision measurements can be limited by fundamental thermal noise e.g. LIGO
- Two approaches to thermal noise
 - » change coating
 - change beam

- Thermal noise scales inversely with spot size
- Gaussian beams are non-optimal

Mesa beam - Construction

- Idea: Big, flat beams are better
- Achieve compromise between flatness of top and diffraction losses

Thermal noise reduction

ACTUAL AC	
Noise Source	Fused Silica (34x20cm)
Coating Brownian	~1.9
Substrate Brownian	~1.6
Coating Thermoelastic	~1.9
Substrate Thermoelastic	~2.2

- Ratio of displacement noise Gaussian/Mesa in mHz^{-1/2}
- Single fused silica test mass

Conclusion....noise down by x2

No measured values yet

Comparison

Mirror Construction

- Two step process
- Step 1Rotation gives rough shape
- 500 nm/mm

Mirror Construction

- Stage 2
- Atomic pencil
- Large diameter optics are easy
- Technique limited by metrology
- Magnetorheological finishing is also an option
- Subaperture stitching interferometry

MH Coating

Before corrective coating

After

Experiment

- Design and construction of single prototype cavity
- Begin
 evaluation of
 mesa beams
 as an option
 for future
 GW
 detectors

Fundamental

Coupling and Locking

- Theoretical coupling with Gaussian beam:
 - ~94% at MH mirror
 - » ~91% at waist

- Pound Drever Hall locking
- Standard techniques still work

Higher order modes

- Odd contribution upon mirror tilts is just like HG_{01/10}
- 'Hermite' and 'Laguerre' families as for GB
- Differential wavefront sensing
 - » successfully modelled student project

Mirror tilts

Alternatives

- Mesa beams are non-optimal
- Hyperboloidal beams
 - » finite mirror effects
- High order LG modes
- Conical beams
- Fully optimised beams

Summary

- Mesa beams can reduce thermal noise effects by around a factor of two
- Work is ongoing to study the properties of these beams
- Moderately more susceptible to cavity perturbations
- Standard techniques still applicable
- There are other options but (to me) at present seem less favourable
- Main hurdle is construction of small optics

