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Michelson-Morley InterferometerLIGO 
Interferometer



3
CLEO, San Jose, CA    5 May 2008
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• “Gravity is Geometry”
• Space tells matter how to move matter tells space how to curve

• Space-time ‘metric’:

• Weak gravity:

• Propagating gravitational waves:  
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μν dxdxgds =2

General relativity 101
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Advanced GR:
gravitational waves

Effect of a gravitational wave (in z) on light 
traveling between freely falling masses, 
observer fixed to near masses 
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h is a strain: ΔL/L
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Gravitational waves 
& electromagnetic waves: a comparison

Electromagnetic Waves
Time-dependent dipole moment 
arising from charge motion

Traveling wave solutions of 
Maxwell wave equation, v = c

Two polarizations: σ +, σ -

Gravitational Waves
Time-dependent quadrapole
moment arising from mass motion

Traveling wave solutions of 
Einstein’s equation, v = c

Two polarizations: h+, hx
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Case #1:  
Try it in your lab

M = 1000 kg
R = 1 m

f = 1000 Hz
r = 300 m

1000 kg

1000 kg

h ~ 10-36
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How to make a gravitational wave
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Case #2:  A 1.4 solar mass binary pair
» M = 1.4 M

R = 11 km
f = 400 Hz
r = 1023 m

Credit: T. Strohmayer and D. Berry

How to make a 
larger gravitational wave

h ~ 10-21

Gravitational Waveform
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What did Einstein think?

Einstein predicts gravitational waves (1916,1918)
A. Einstein, Sitzber. deut. Akad. Wiss. Berlin, Kl. Math. Physik u. Tech. (1916), p. 

688; (1918), p. 154

Einstein changes his mind  (1936)

Daniel Kennefick, Physics Today, Sept. 2005
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Existence proof: PSR 1913+16

Joseph Taylor Russell Hulse

•

•

17 / sec

~ 8 hr
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How to detect a gravitational wave

Rai Weiss, MIT

Ron Drever, Caltech



11
CLEO, San Jose, CA    5 May 2008

Realistically, how 
sensitive can an interferometer be?

L
h λ~

roundtripN
1

x

storagephotonN τ&
1

x

Putting in numbers:

h ~ 10-21

5 W

250 W

10 kW 10 kW

λ=1.06 μm
L = 4000 m
Nroundtrip = 40
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An interferometer is not a telescope

Sensitivity depends on propagation direction, polarization

Really a microphone!

“×” polarization “+” polarization RMS sensitivity
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Fundamental noises in LIGO

•Displacement noises
• Seismic noise
• Radiation pressure
• Thermal noise

• Suspensions
• Optics

•Sensing noises
• Shot noise
• Residual gas noise
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LIGO sites 
LIGO Livingston Observatory
• 1 interferometers

• 4 km arms

• 2 interferometers
• 4 km, 2 km arms

LIGO Hanford Observatory LIGO Observatories are operated 
by Caltech and MIT
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Seismic noise

Tubular coil springs with internal 
damping, layered between steel 
reaction masses

Need 10-19 m/⌦Hz @100 Hz
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Suspended Mirrors

• mirrors are hung in a pendulum

‘freely falling masses’

• provide 100x suppression above 1 Hz

• provide ultraprecise control of mirror 

displacement (< 1 pm)

Wire standoff & magnet 
“OSEM”
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Frequency stabilization in LIGO

Δf/f ~ 3 x 10-22 @ 100 Hz 

Ultimately: 

Hierarchical approach use the stability provided by the arm cavities
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Shot noise and 
radiation pressure in LIGO

Photons obey Poissonian statistics

How to discriminate between Δnphoton and ΔL?? 
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Shot noise: Radiation pressure noise:

“Standard Quantum Limit”
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Length readout and control
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h ~ 3 x 10-23ΔL~ 1.2 x 10-19



21
CLEO, San Jose, CA    5 May 2008

Man-made noise
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Nature can also be a problem…

Olympia Earthquake
Feb 28, 2001; Mag 6.8

Hurricane Katrina
August 29, 2005
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The Global Network 
of Gravitational Wave Detectors

GEO600
Germany

VIRGO
Italy

LIGO

LIGO

TAMA
Japan
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The astrophysical 
gravitational wave source catalog

Casey Reed, Penn State 

Credit: AEI, CCT, LSU

Coalescing 
Binary Systems
• Neutron stars, 
black holes
• ‘chirped’ waveform

Credit: Chandra X-ray Observatory 

‘Bursts’
• asymmetric core 
collapse supernovae
• cosmic strings
• ???

NASA/WMAP Science Team 

Cosmic GW 
background
• residue of the Big 
Bang
•probes back to 10-21 s
• stochastic, 
incoherent background

Continuous 
Sources
• Spinning neutron 
stars
• monotone waveform
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The Crab Pulsar
• Spinning neutron star  

• remnant from supernova in year 1054

• spin frequency νEM = 29.8 Hz

νgw = 2 νEM = 59.8 Hz

• spin down due to: 

• electromagnetic braking

• GW emission?

• S5 preliminary upper limit:

h < 3.4 x 10-25 4.2x below
the spindown limit

• S5 preliminary ellipticity:

ε < 1.8 x 10-4 
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Upper limit map of gravitational wave stochastic 
background

Current upper limit on gravitational wave stochastic background 
(preliminary): ΩGW ( ρ/ρcrit) < 9 x10-6
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Advanced LIGO

100 million light 
years

LIGO now

Advanced LIGO
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The LIGO Detector

5 W

250 W

10 kW
10 kW

LIGO
125 W

800 kW

800 kW

2 kW

Advanced LIGO   
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Advanced LIGO
180 W laser

Seismic isolation

Mirrors

Mirror Suspensions
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Radiation pressure effects 
in Advanced LIGO

Advanced LIGO: 600-800 kW on 
resonance
» Radiation pressure on resonance:

Frad = 2Pcav /c ~ 5 mN

» Leads to (uncontrolled) ΔL ~ 10s of μm

3 types of potential instabilities
» Optical springs

» Angular ‘tilt’ instabilities 

» Parametric instabilities

40 kg

ΔL

mg

Frad
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Angular instabilities

If cavity beam is displaced off 
center, Frad exerts torques on 
mirrors:

Mirrors act as torsional
pendulum

» One stable mode
» one unstable mode

c
xP2 cavΔτ =

Sidles and Sigg, Phys. Lett. A 354,167-172 (2006)
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Parametric instabilities

Light (Brillioun) scattering from higher order optical modes to mirror

Braginsky, et al., Phys. Lett. A287, 331 (2001)
Zhao, et al., PRL 94, 121102 (2005)

mωωω =− 10

Acoustic mode ωm
Cavity Fundamental mode
(Stored energy ωo)

Radiation pressure 
force

input 
frequency ωo

Stimulated 
scattering 
into ω1
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Beyond the standard quantum limit
Standard Quantum Limit

» assumes no correlations between SN and RP

Signal recycling induces photon ‘back-action’ on mirrors
» Quantum noise is dynamically correlated, leading to h(f) < hSQL(f) in a limited 

frequency range:

A. Buonanno and Y. Chen, PRD 64, 042006 (2001)
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Gravitational Wave Astronomy

The Visible 
Universe

The Radio
Universe

Image courtesy of NRAO/AUI;

J.M. Dickey and F.J. Lockman

The Microwave Universe Wilkinson Microwave 
Anisotropy Probe

The X-ray Universe

Galaxy NGC 6240 

Chandra X-ray Telescope

The Gravitational Wave Universe

?Stay
Tuned…
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LIGO Scientific Collaboration
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Thank you!

http://www.ligo.caltech.edu/
http://www.ligo.org/
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