The Laser Interferometer Gravitational Wave Observatory: Probing the Dynamics of Space-Time with Attometer Precision

David Reitze

Physics Department University of Florida Gainesville, FL 32611 For the LIGO Science Collaboration

"Colliding Black Holes", Werner Berger, AEI, CCT, LSU

LIGO G080283-00-Z

LIGO Interferometer

A DESCRIPTION

General relativity 101

• "Gravity is Geometry"

- Space tells matter how to move $\leftarrow \rightarrow$ matter tells space how to curve
- Space-time 'metric': $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$
 - Weak gravity: $g_{\mu\nu} = \eta_{\mu\nu} + (h_{\mu\nu}) |h_{\mu\nu}| << 1$
- Propagating gravitational waves:

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right)h = 0$$

$$h(t) \sim h_{\mu\nu} e^{i(k_{\alpha}x^{\alpha} - \omega t)} + h_{\mu\nu} e^{-i(k_{\alpha}x^{\alpha} - \omega t)}$$

Advanced GR: gravitational waves

 Effect of a gravitational wave (in z) on light traveling between <u>freely falling masses</u>, observer fixed to near masses

h is a strain: $\Delta L/L$

Electromagnetic Waves

• Time-dependent <u>dipole</u> moment arising from *charge motion*

$$\hat{E}(\hat{r},t) \sim \frac{\mu_0}{4\pi r} \Big[\hat{r} \times \Big(\hat{r} \times \hat{p} \Big) \Big]$$

- Traveling wave solutions of Maxwell wave equation, v = c
- Two polarizations: σ^+ , σ^-

Gravitational Waves

• Time-dependent <u>quadrapole</u> moment arising from *mass motion*

$$h_{\mu\nu}(\omega,t) = \frac{2G}{rc^4} \mathbf{I}_{\mu\nu}^{\mathbf{w}}(\omega,t)$$

$$h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{rc^4}$$

- Traveling wave solutions of Einstein's equation, v = c
- Two polarizations: h_+ , h_x

How to make a gravitational wave

Case #1: ry it in your lab M = 1000 kg R = 1 m f = 1000 Hz r = 300 m

h ~ 10⁻³⁶

 $h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{rc^4}$!!!

1000 kg

1000 kg

How to make a larger gravitational wave

Case #2: A 1.4 solar mass binary pair > M = 1.4 M. R = 11 km f = 400 Hz r = 10²³ m

h ~ 10⁻²¹

- Einstein predicts gravitational waves (1916,1918)
 - A. Einstein, Sitzber. deut. Akad. Wiss. Berlin, Kl. Math. Physik u. Tech. (1916), p. 688; (1918), p. 154
- Einstein changes his mind (1936)

Together with a young collaborator, <u>I arrived</u> at the interesting result that gravitational <u>waves do not exist</u>, though they had been assumed a certainty to the first approximation. This shows that the non-linear general relativistic field equations can tell us more or, rather, limit us more than we have believed up to now.⁴

 A. Einstein, The Born-Einstein Letters: Friendship, Politics, and Physics in Uncertain Times, MacMillan, New York (2005), p. 122.
Daniel Kennefick, Physics Today, Sept. 2005

Existence proof: PSR 1913+16

CLEO, San Jose, CA 5 May 2008

LIGO How to detect a gravitational wave

ELECTROMAGNETICALLY COUPLED BROADBAND GRAVITATIONAL ANTENNA

Ron Drever, Caltech

UF FLORIDA

Realistically, how LS sensitive can an interferometer be?

An interferometer is not a telescope

• Sensitivity depends on propagation direction, polarization

Really a microphone!

Fundamental noises in LIGO

LIGO

•Displacement noises

- Seismic noise
- Radiation pressure
- Thermal noise
 - Suspensions
 - Optics
- •Sensing noises
 - Shot noise
 - Residual gas noise

LIGO sites

Seismic noise

Suspended Mirrors

• mirrors are hung in a pendulum

- → 'freely falling masses'
- provide 100x suppression above 1 Hz
- provide ultraprecise control of mirror displacement (< 1 pm)

Frequency stabilization in LIGO

Hierarchical approach \rightarrow use the stability provided by the arm cavities

UF FLORIDA

LIGO

CLEO, San Jose, CA 5 May 2008

Shot noise and radiation pressure in LIGO

- Photons obey Poissonian statistics
- How to discriminate between Δn_{photon} and ΔL ??

Shot noise:

LIGO

Radiation pressure noise:

$$h_{min,shot}(f) = \frac{1}{L} \sqrt{\frac{\eta c \lambda}{2\pi P_{in}}}$$

$$h_{rad}(f) = \frac{1}{m_{mirror}\pi f^2 L} \sqrt{\frac{\eta P_{in}}{2\pi c\lambda}}$$

"Standard Quantum Limit"

$$h_{SQL}(f) = \frac{1}{\pi f L} \sqrt{\frac{\eta}{m_{mirror}}}$$

CLEO, San Jose, CA 5 May 2008

Length readout and control

Man-made noise

LIGO

CLEO, San Jose, CA 5 May 2008

LIGO

Nature can also be a problem...

The Global Network of Gravitational Wave Detectors

The astrophysical gravitational wave source catalog

Credit: AEI, CCT, LSU

Coalescing **Binary Systems**

- Neutron stars, black holes
- 'chirped' waveform

'Bursts'

- asymmetric core collápse supernovae
- cosmic strings
- ???

NASA/WMAP Science Team

Cosmic GW background

- residue of the Big Bang
- •probes back to 10⁻²¹ s
- stochastic, incoherent background

The Crab Pulsar

- Spinning neutron star
 - remnant from supernova in year 1054
- spin frequency $v_{EM} = 29.8 \text{ Hz}$

 \rightarrow v_{gw} = 2 v_{EM} = 59.8 Hz

- spin down due to:
 - electromagnetic braking
 - GW emission?

• S5 preliminary upper limit:

 $h < 3.4 \times 10^{-25} \rightarrow 4.2 \times \underline{below}$ the spindown limit

• S5 preliminary ellipticity:

 $\varepsilon < 1.8 \times 10^{-4}$

Right ascension [hours]

Current upper limit on gravitational wave stochastic background

(preliminary): Ω_{GW} ($\odot \rho/\rho_{crit}$) < 9 x10⁻⁶

Advanced LIGO

Advanced LIGO

Advanced LIGO

180 W laser

LIGO

Seismic isolation

Mirror Suspensions

Mirrors

Ribbons welded to silica ears bonded to mass

CLEO, San Jose, CA 5 May 2008

Radiation pressure effects in Advanced LIGO

- Advanced LIGO: 600-800 kW on resonance
 - » Radiation pressure on resonance:

 $F_{rad} = 2P_{cav}/c \sim 5 \text{ mN}$

- » Leads to (uncontrolled) $\Delta L \sim 10s \text{ of } \mu m$
- 3 types of potential instabilities
 - » Optical springs
 - » Angular 'tilt' instabilities
 - » Parametric instabilities

LIGO

CLEO, San Jose, CA 5 May 2008

 Δx

Angular instabilities

Sidles and Sigg, Phys. Lett. A 354,167-172 (2006)

 If cavity beam is displaced off center, F_{rad} exerts torques on mirrors:

$$\tau = \frac{2P_{cav}\Delta x}{c}$$

- Mirrors act as torsional pendulum
 - » One stable mode
 - » one unstable mode

LIGO

CLEO, San Jose, CA 5 May 2008

Parametric instabilities

• Light (Brillioun) scattering from higher order optical modes to mirror

Braginsky, et al., Phys. Lett. A**287**, 331 (2001) Zhao, et al., PRL **94**, 121102 (2005)

LIGO

A. Buonanno and Y. Chen, PRD 64, 042006 (2001)

Beyond the standard quantum limit

- Standard Quantum Limit
 - » assumes no correlations between SN and RP

$$h_{SQL}(f) = \frac{1}{\pi f L} \sqrt{\frac{\eta}{m_{mirror}}}$$

- Signal recycling induces photon 'back-action' on mirrors
 - » Quantum noise is dynamically correlated, leading to h(f) < h_{SQL}(f) in a limited frequency range:

The Gravitational Wave Universe

Stay Tuned...

Acknowledgments

Members of the LIGO Laboratory

- LSC
- Members of the LIGO Science Collaboration
- National Science Foundation

LIGO

More Information

<u>http://www.ligo.caltech.edu;</u> <u>www.ligo.org</u>

Thank you!

