Advanced LIGO Status & Conceptual Design

Sam Waldman

LIGO Caltech GWADW 2008 Elba, Italy

LIGO-G080278-00-I

GWADW Elba, Italy May 2008

•IFO description and sensitivity goals

Sensing and control
DC readout
Lock acquisition
Fused silica suspensions
Enhanced LIGO
Current status

•Tune sensitivity as a function of signal recycling phase, signal recycling reflectivity, and power

•Maximize for specific sources using *bench62* noise estimates

•Corrected thermo-optic noise contribution improves high frequency performance by 10%

•*bench70* to be released soon

Southing matter in that per motor at 1 milly for Science model i (2010 actaining	Sensing	Matrix in	Watts pe	er meter at	1 kHz	, for Science	Mode 1	(zero detuning
--	---------	-----------	----------	-------------	-------	---------------	--------	----------------

-		—		,		
Port	CARM	DARM	PRCL	MICH	SRCL	
REFL I1	9.4e + 08	1.3e+05	7.3e + 07	1e + 06	1.4e + 04	
AS DC	3e + 06	9.7e + 09	6.7e + 05	3.4e + 07	7e+03	
POP I1	3.2e + 07	4.4e + 03	$1.2e{+}07$	6.6e + 03	3e+02	
POP Q2	8.7e + 06	4.2e + 04	4.6e + 05	$7.4\mathrm{e}{+05}$	8.8e + 04	
POP I2	8.7e + 06	9e + 03	1.8e+06	9.9e+04	3e+05 S	. Ballmer

 Initial unlocked alignment, in-lock cavity optimization, angular spring damping

From

Input

Optics

- Optical levers
- Wavefront sensors
- QPDs
- Non-diagonal sensing matrices
- 5 to 125 W operation

WFS

WFS

•IFO description and sensitivity goals

QPD

•Sensing and control

• Fused silica suspensions

QPD

Lock acquisition

Enhanced LIGO
 Current status

DC readout

QPD

ETM transmission

T=2%

LIGO

T=10%

Insertable

steering mirror

 $10 \,\mu\text{W}$ - $4.5 \,\text{W}$

in-vacuum

flipper beam dumps

vacuum window

lens

3 mW-15 mW

few µW-10 mW

beam dump

Quad:

3 mm InGaAs

picomotor mirror

3 mW-100 mW

Lock acquisition • Fused silica suspensions

 Enhanced LIGO •Current status

•DC readout

•Sensing and control

•IFO description and sensitivity goals

In-vacuum sensing for all DOF

IFO description and sensitivity goalsSensing and control

Waldman DCC:G080278-00

•DC readout

- Lock acquisition
- Fused silica suspensions
- Enhanced LIGO
- •Current status

- Homodyne detection of DARM: use the carrier as the reference oscillator
- ~10 pm DARM offset
- Requires RIN $\approx 10^{-9}$ Hz^{-1/2} at 10 Hz
- Output Mode Cleaner

LIGO

- Rapid, deterministic lock acquisition
- Use LAI for initial de-tuned arms
- Compensate for CARM optical spring
- 3f vertex signals

IFO description and sensitivity goalsSensing and controlDC readout

Lock acquisition

Fused silica suspensionsEnhanced LIGOCurrent status

- Rapid, deterministic lock acquisition
- Use LAI for initial de-tuned arms

10¹²

•IFO description and sensitivity goals •Sensing and control DC readout

Lock acquisition

• Fused silica suspensions

- Enhanced LIGO
- Current status

 $\sqrt{TRX + TRY}$ vs CARM

- Lock Acquisition Interferometer to control arm cavities independent of vertex
- Digital Interferometery, Seismic Platform Interferometer, frequency shifted PDH
- Reduce RMS arm motion to $\leq 1 \text{ nm}$
- Reduce force required from quad actuators

GWADW Elba, Italy May 2008

Waldman DCC:G080278-00

IFO description and sensitivity goals
Sensing and control
DC readout
Lock acquisition
Fused silica suspensions

Enhanced LIGO

Current status

IFO description and sensitivity goals
Sensing and control
DC readout
Lock acquisition
Fused silica suspensions
Enhanced LIGO
Current status

- Advanced LIGO approved by NSF
- Stable power- and signal- recycling
- Zero detune, 125 W, 180 Mpc baseline
- 9, 45 MHz RF sidebands with short Schnupp asymmetry
- DC readout with output mode cleaner
- Lock acquisition interferometer
- Tapered, cylindrical suspension

IFO description and sensitivity goals
Sensing and control
DC readout
Lock acquisition
Fused silica suspensions
Enhanced LIGO
Current status

- Enhanced LIGO commissioning underway, S6 in January 2009
 - DC readout with OMC
 - HAM Internal Seismic Isolation (ISI)
 - 35 W LZH laser
- Advanced LIGO at LASTI
 - BSC ISI
 - Quadruple suspension prototype

RFQ's for blanks "out on the street"

TCS upgrades

LSC

GWADW Elba, Italy May 2008

3x 35 W LZH PSL delivered

LIGO HAM ISI at LLO with OMC and suspension

