Power Stabilization of the 35W Reference System

<u>Frank Seifert</u>, Patrick Kwee, Benno Willke, Karsten Danzmann

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute)

University of Hannover

LSC Caltech, March 19th, 2008

LIGO-G08xxxx-xx

Max Planck Institute for Gravitational Physics (ALBERT EINSTEIN INSTITUTE) Leibniz Universität Hannover Institut für Gravitationsphysik

35W Laser Overview

- Design & fabrication by LZH
- 2W NPRO seed laser
- 4-stage Nd:YVO amplifier
- > 35 W output power
- Assembled on breadboard in single housing
- AOM, EOM, isolator, and shutter included
- Running 24/7 @ AEI since 12/07

• More details see Saschas talk "ELIGO Laser, wednesday afternoon

35W Laser Performance

• More details (spatial profile etc.) see Saschas talk ,,ELIGO Laser,, wednesday afternoon

Power Actuators I : AOM

- AOM: Crystal Technology 3080-194
- Driver: Landwehr A274-18 (80MHz, 5W max)

Power Actuators I : AOM (cont.)

Power Actuators II: LD current

- "Digital modulation" via Beckhoff @ diode control box
- 2 inputs \rightarrow 2 laser diodes each (in series)
- Modulation index adjustable via touch panel
- On/Off-control via touch panel
- Low speed

calibrated TF Current Modulation Input MOPA RefSys (all diodes modulated)

Reference System Setup

Spatial filtering

- Classical PMC design (only reflectivities changed)
- F≈46 (p-pol) / F≈383 (s-pol)
- Locked in s-pol most of the time since 12/07
- higher circulating power as for the 200W laser system (factor 8.3 between s and p → 33W x 8.3 = 275W)
- Curved mirror T=20ppm (for power stabilization in-loop PD)
- Small acoustic enclosure

Reference System Setup (cont.)

Free Running Noise

First Results

First Results (cont.)

Work In Progress

- Further reduction of beam pointing \rightarrow shorter beam pathes, beam tubes(?)
- Reduction of scattered light \rightarrow superpolished mirrors, block ghost beams
- Increasing loop gain and bandwidth
- More in-loop power \rightarrow (second) in-loop detector behind PMC
- Reduction of particle count \rightarrow beam tubes (?)

Other related work

- Photodiode characterization for >500mA detector:
 - breakdown voltage (dark current vs bias)
 - linearity
 - thermal impedance
- Resistor current noise:
 - 40 different types measured so far (100 Ohm)
 - higher values next couple of weeks
- New high current photodetector topologies:

- lower input referred noise / higher photocurrent without decreasing effective gain

spare slides

G08xxxx-xx

Resistor Current Noise

Power Stabilization Setup

G08xxxx-xx

Results – DC & AC Coupled Loop

Critical Factors

- <u>very</u> (!) sensitive to ground loops
 - → avoid <u>any (!)</u> ground loop, even at RF (capacitive coupling)
 - \rightarrow independent supply of components
 - → battery powered devices
- beam pointing
 - → reduction by PMC (passive filtering)
 - ➔ proper adjustment of photodiodes (minimize with impressed pointing) (PZT behind PMC)
- acoustics
 - → shielded environment
 - \rightarrow proper mechanical design
- air currents
 - → vacuum

Photodiode Non-uniformity & Pointing

spatial uniformity measurement

pointing measurement

(when) does it limit the performance ?

Pointing Sensitivity Measurement

3 different methods → very good agreement

G08xxxx-xx

Power Fluctuations Due To Pointing

Low Frequency Noise in PD's

- pre-stabilized laser system below 1E-8 level
- amplification after substraction of photocurrents
- temperature stabilized photodiodes
- vacuum tank

Balanced Detection Setup

Balanced Detection – First Experiment

first test of balanced detection setup with large area Si photodiodes without temperature stabilization:

Balanced Detection – Results (1)

bias voltage dependence:

Balanced Detection – Results (2)

temperature dependence:

Balanced Detection – Results (3)

power dependence:

Balanced Detection InGaAs, Perkin Elmer, 2mm, 293K, Ubias=5V, 2006/03/09

Low Frequency Limit

PD low frequency noise limiting **?**:

Photodiode Temperature Measurements

P = 130 mW

 ΔT only $\approx 10 K$ ٠

PD EG&G C30642G without window

real chip temperature ? ٠

G08xxxx-xx