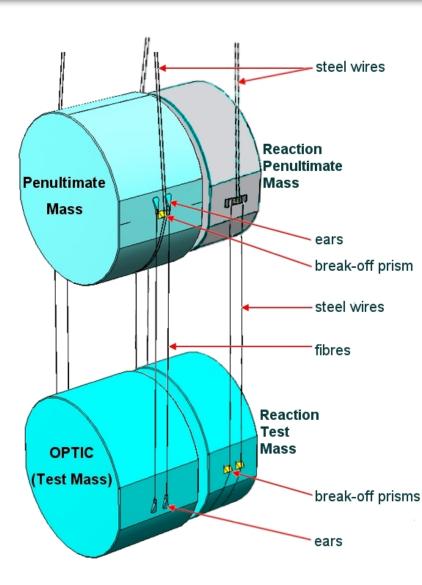


Update on bonding ears and prisms to the test masses for LASTI

Mariëlle van Veggel¹, Helena Armandula², Russell Jones¹, William Cunningham¹, Karen Haughian¹, Jim Hough¹, Sheila Rowan¹, Gerardo Moreno³, Danny Sellers⁴


- ¹ Institute for Gravitational Research, University of Glasgow
 ² California Institute of Technology, LIGO project
 ³ LIGO Hanford Observatory
- ⁴LIGO Livingston Observatory

Introduction

- For LASTI the first monolithic bottom stage is being built by the UK groups
- First stages:
 - Bond ears to the two penultimate masses and the test mass
 - Glue prisms to the penultimate masses and the reaction mass

Introduction

- In bonding exercise on which we reported before:
 - August 2007
 - Bonded ears to the first penultimate mass and to the test mass
- Two subsequent bonding exercises:
 - December 2007 and February 2008
 - Bond ears to the second penultimate mass
 - Bond prisms to the penultimate masses and the reaction test mass
 - Inspection of the bonds and positions of the ears
 - (Weighing of the masses)

Lift the mass from the package onto the washing bath



- Lift the mass from the package onto the washing bath
- Prepare bonding template

advancedligo

- Lift the mass from the package onto the washing bath
- Prepare bonding template
- Prepare bonding solution

advancedligo

- Lift the mass from the package onto the washing bath
- Prepare bonding template
- Prepare bonding solution
- Wash ears for side 1

advancedligo

19th March 2008

- Prepare bonding template
- Prepare bonding solution
- Wash ears for side 1
- Wash side 1

advancedligo

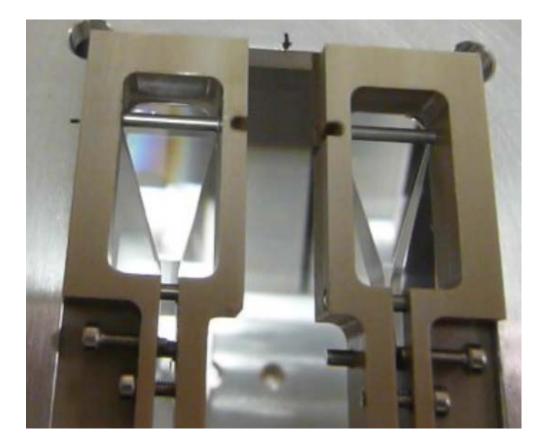
19th March 2008

• Lift the mass onto the bonding table

- Lift the mass onto the bonding table
- Set the bonding template

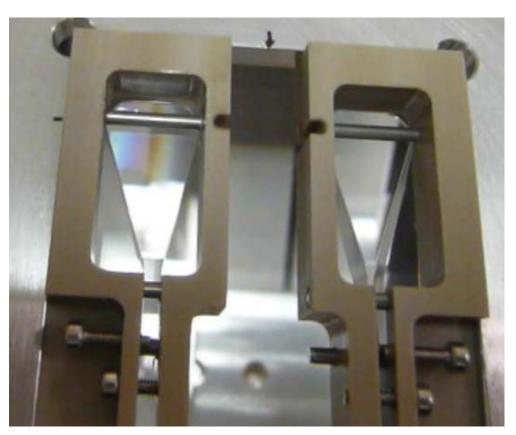
advancedligo

- Lift the mass onto the bonding table
- Set the bonding template
- Bond the ears


advancedligo

19th March 2008

- Lift the mass onto the bonding table
- Set the bonding template
- Bond the ears
- Bond inspection


advancedligo

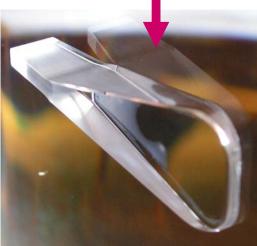
19th March 2008

- Lift the mass onto the bonding table
- Set the bonding template
- Bond the ears
- Bond inspection
- Repeat the procedure for side 2
- Pack the mass

advancedligo

• Inspect the bonds

• Inspect the ear positions



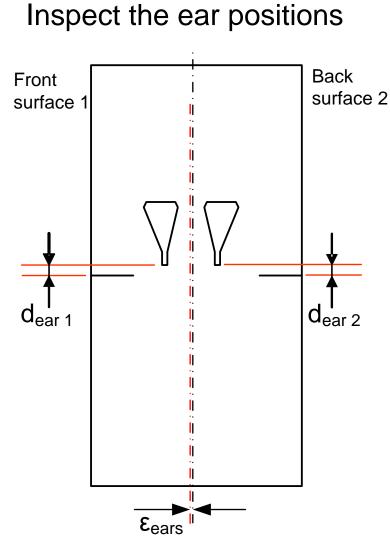
- Inspect the bonds
 - All bonds are OK

	PM 1	PM 2	ТМ
Side 1	Clear, no features	Clear, no features	Clear, no features
Side 2	Clear, no features	Clear, a small feature in 1 corner	2/3 clear

• Inspect the ear positions

IGR

SUPA



Ear bond inspection

IGR

SUPA

- Inspect the ear positions
 - Penultimate Mass 1

	ε _{ear} [mm]	d _{ear 1} [mm]	d _{ear 2} [mm]	δd _{ears} [mm]
Side 1	0.25	1.9	2.5	0.6
Side 2	0.25	2.2	2.2	0.0

advancedligo

- d_{ear} prospected 2.65 mm
- Measurement accuracy of d_{ear} is 0.3 mm

19th March 2008

- Inspect the ear positions
 - Penultimate Mass 2

- d_{ear} prospected 2.65 mm

	ε _{ear} [mm]	d _{ear 1} [mm]	d _{ear 2} [mm]	δd _{ears} [mm]
Side 1	0.0	2.9	2.2	0.7
Side 2	0.0	2.2	2.2	0.0

IGR

advancedligo

SUPA

19th March 2008

LSC meeting

Measurement accuracy of d_{ear} is 0.3 mm

- d_{ear} prospected 2.55 mm

- Inspect the ear positions
 - Test Mass

	ε _{ear} [mm]	d _{ear 1} [mm]	d _{ear 2} [mm]	δd _{ears} [mm]
Side 1	-0.2	2.4	2.4	0.0
Side 2	-0.1	2.0	2.0	0.0

advancedligo

SUPA

19th March 2008

LSC meeting

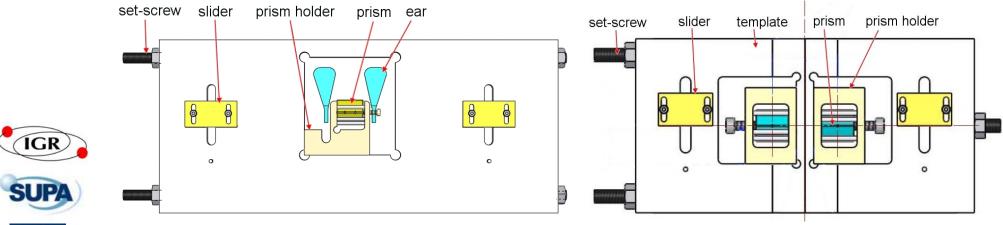
Measurement accuracy of d_{ear} is 0.3 mm

Prism glueing

- Penultimate mass
 - Lithosil
 - 2 grooves
 - 1 prism on each side
- Reaction mass
 - F2 glass (15% lead)
 - 1 groove
 - 2 prisms on each side
- Have been made at Strathclyde University using laser ablation
 - Grooves do not show cracks, which improves strength for the wire suspension

TM-1000_0421

2008/01/15



1 mm

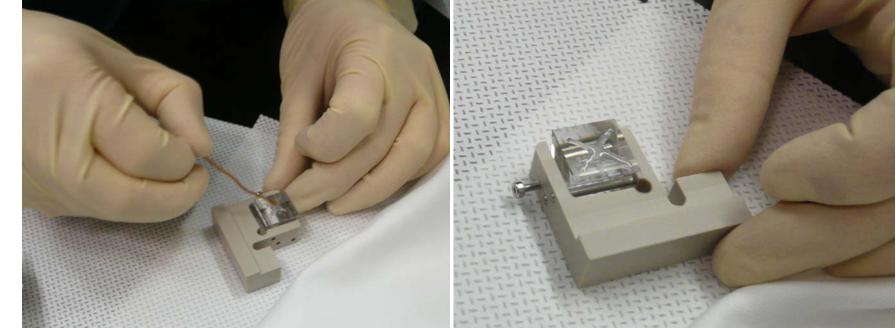
x60

- Lift the mass from the package onto the bonding table
- Prepare bonding templates
 - 2 different templates for the PM and RM
 - Set sliders and reference screws
- Wipe bonding sides and prisms with methanol
- Put prisms into prism holders

advancedligo

• Place the template onto the mass

- Place the template onto the mass
- Prepare VacSeal adhesive
 - Mix the adhesive
 - Backing pump

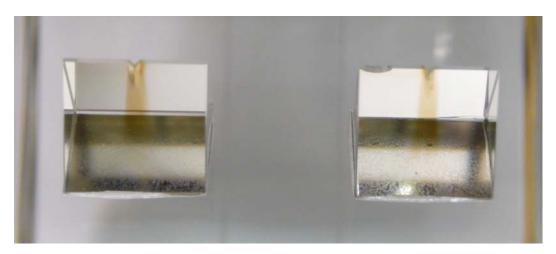


19th March 2008

- Place the template onto the mass
- Prepare VacSeal adhesive
 - Mix the adhesive
 - Backing pump
- Apply the adhesive on the prisms in a cross-shape

- Place the template onto the mass
- Prepare VacSeal adhesive
 - Mix the adhesive
 - Backing pump
- Apply the adhesive on the prisms in a cross-shape
- Bond prisms

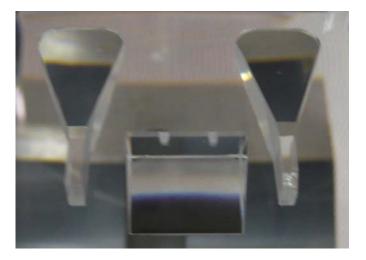
- Place the template onto the mass
- Prepare VacSeal adhesive
 - Mix the adhesive
 - Backing pump
- Apply the adhesive on the prisms in a cross-shape
- Bond prisms
- Cure the bonds for 24 hours before removing the template
 - Of which at least
 4 hours under a 250 W
 heat lamp
 - Temperature ~50°C

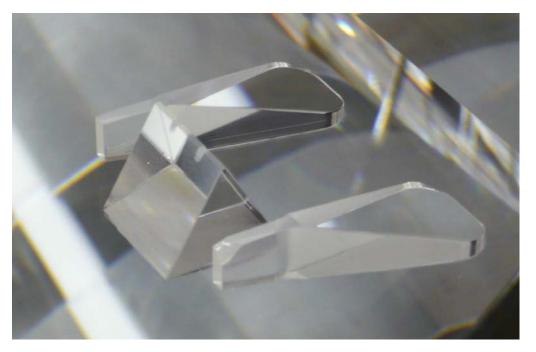


Prism bond inspection after curing

- F2 prisms on the reaction mass
 - a grainy structure
 - the cross drawn with the adhesive visible

advancedligo





Prism bond inspection after curing

- Lithosil prisms on the penultimate masses
 - Structures in adhesive are not as clearly visible

advancedligo

19th March 2008

Conclusions

- All ears and prisms bonded successfully
 - Horizontal alignment within 0.2 mm (except for PM 1)
 - Vertical alignment is accurate within 0.7 mm
 - All ears have clear bonds except one ear on the test mass (2/3 has bonded)
 - Alignment of the prisms is good by eye inspection
 - The prism bonds are ok
 - show a grainy structure and the adhesive cross

Next steps

- Glue the magnets to the penultimate masses
- Vacuum bake the masses
- Weld fibres to the ears
- Installation and testing of monolithic stage in LASTI
- Improvements for advanced LIGO
 - Build a washing bath, especially for cleaning before bonding ears
 - De-bonding tool
 - Measurement device for measuring the positions of the ears
 - Small adaptations to the bonding jigs

advancedligo

