

Broadband Search for Continuous-Wave Gravitational Radiation with LIGO

> Vladimir Dergachev (University of Michigan) for the LIGO scientific collaboration

April APS meeting April 11-15 2008

DCC: LIGO-G080173-00-Z

Challenges of search for CW gravitational waves

- Gravitational waves from spinning neutron stars are expected to be weak – need to average over long time periods
- Several parameters to search for: frequency, sky position, spindown, polarization
- Coherent methods are very sensitive, but result in enormous search space size – broadband, all sky search is impractical for large time base
- PowerFlux place sky-dependent upper limits and detect signals by averaging power. Practical for all-sky broadband searches.

PowerFlux analysis pipeline

PowerFlux results

- PowerFlux produces a 95% CL upper limit for a particular frequency, sky position, spindown and polarization. One of three methods used in S4 all-sky search (arXiv:0708.3818 = Phys. Rev. D 77 (2008) 022001)
- Too much data to store, let alone present the number of sky positions alone is ~10^5 at low frequencies and grows quadratically with frequency
- The upper limit plots show maximum over spindown range, sky and all polarizations
- Performed all-sky, multiple spindown (from 0 through -5e-9 Hz/s) searches
- Data from first 8 months of S5 science run: 7 Nov 2005 through 20 July 2006

Histograms (one entry per sky point)

H1 S5 0-spindown run

Multiple outliers

Clean band – maximum SNR 6

Candidate domain map, red marks higher SNR candidates

SNR map

Each local maximum used as seed – then apply gradient search

Color indicates rank

DEC

5.98885

46505

Outlier followup

- Determine local SNR maxima, pick N highest (1000 from each of 10 sky slices)
- Apply a variation of gradient search to optimize SNR
- Look for outliers common to two interferometers:
 - SNR>6.25 for each interferometer
 - Difference in frequency less than 1/180 Hz
 - Difference in spindown of less than 4e-10 Hz/s
 - Closer than 0.14 radians (~8 degrees) on the sky
- Surviving coincidence candidates subjected to intensive followup

Sample outlier - caused by violin modes (5)

Signal injections guide followup

Interactive interface

Issues in followup

- Number of sky positions comparable with quantity of input data (especially at high frequencies) – SNR of the loudest outlier in pure noise can easily reach 6.0
- Relatively loose initial coincidence requirements are necessary not to miss real signals
- Sky partitioning that was done to reduce memory footprint introduces spurious initial coincidences – as partition boundaries are likely to be marked as local SNR maxima.
- Parameters that are narrow for a semi-coherent search are too wide for a comfortable coherent followup

Conclusion

- All-sky multiple-spindown run over first 8 months of data complete, followup in progress
- Looking in detail at the output of low-SNR coincidence algorithm
- Full S5 data is available, more results to follow

End of talk

(supporting slides for questions follow)

Graphs

Frequency distribution

Power accumulation

L1 S5 0-spindown run

S5 science run sensitivity

Partial sky (targeted) run

- Searched sky around
 - globular clusters M55, NGC104
 - galactic center Sgr A*
 - Andromeda M31 (control)
- 100-700 Hz
- -1.01e-8 Hz/s through 1.01e-8 Hz/s in 2e-10 Hz/s steps

Search area (for ~270 Hz, non-zero spindown)

M31

Need to search different sky locations due to difference between possible source spindown and spindown sampled

M55

Sgr A*

NGC 104 DEC RA

Area decreases with frequency

H1 Sgr A* upper limits

Log10 Strain

S5 spindown-0 run

"S parameter"

Doppler Skybands

Skyband 0 (good – only exceptionally strong detector artifacts) Skyband 10 (worst – many detector artifacts)

DE

С

RA

Hanford 4km upper limits are slightly higher than the summary curve, but much cleaner in low frequency range

S4 run results Hanford 4km

Livingston 4km upper limits are slightly lower than the summary curve, but not as clean in low frequency range

S4 run results Livingston 4km

Frequency

S5 summary curve deviation

