

The Coating Scattering and Absorption Measurements of LIGO I mirrors at Caltech

Liyuan Zhang, Bill Kells, Lee Cardenas, Helena Armandula, GariLynn Billingsley

California Institute of Technology

LIGO RTS system, an optical characterization bench

It was established at Caltech OTF lab in 1997 : (Jordan Camp, Bill Kells et. al.)

- AR Reflection,
- HR Transmission,
- HR Scattering at 45°.

Since 2001 :

- Substrate birefringence homogeneity,
- HR 'Total Integrated Scattering' (1.5° < θ < 78°),
- Substrate bulk absorption,
- HR Coating absorption.

LIGO Schematic of the 'TIS' measurement

Calibration and bandwidth of the 'TIS' measurement

TIS results of the LIGO I mirrors

LIGO

LANNOLO LE OF TECHNOLO

Histograms of the TIS results

LIGO

LIGO The measured micro roughness of the LIGO I substrates

Power spectral density analysis of optical substrate for gravitational-wave interferometry

Christopher J. Walsh et.al., Applied Optics, Vol. 38, p4790, 1999

Table 1.	Values of the	Exponent n	in Eq. (12)	Obtained by	Fitting of an	
Analytic	Curve to the	PSD Curves	from the L	IGO and the	TOPO 2.5 ×	
and 40× Data"						

Substrate Surface	Radius of Curvature <i>R</i>	n	Number of Surfaces
RM			
Side 1	15 km	1.43 - 1.47	3
Side 2	Plane	1.43 - 1.45	4
ETM side 1	$7.4~\mathrm{km}$	1.41-1.51	4
FM side 1	Plane	1.22 - 1.39	3
ITM side 1	14.18 km	1.45-1.55	3

"The values of n represent the range of values found for the number of surfaces given. R indicates the specified radius of curvature of the surface.

G080162-00-D

William P. Kells, LIGO-T080010

TIS ~ (4πσ/λ)²

σ: integrated PSD from v to infinite.
Bandwidth of the integrating sphere

Only ~5% the micro roughness scatter of the LIGO I mirror (test mass) in the interferometer is captured. LIGO

Results of the 5 Mode Cleaner spare mirrors

G080162-00-D

- Thanks to a visit to Ginzton Laboratory, Stanford University, we implemented the photothermal common-path interferometer (PCI, see A. Marksoyan's talk) in our RTS bench, using a 30W cw Nd:YAG and 5mW He-Ne.
- The calibration is based on the 1" (dia.) reference mirror which is measured in the contamination cavity, and cross checked with the mirror measured at Ginzton Laboratory.

LIGO HR absorption measurement in the contamination cavity

Daqun Li, Dennis Coyne, and Jordan Camp, Applied Optics, Vol.38, p5378, 1999

G080162-00-D

HR absorption of 4ITM07,

which was swapped out from LHO in 2005

- No uniform contamination layer is observed.
- Contamination are some high absorption points.
- The point contamination can easily be cleaned by drag wiping.

LIGO

LIGO

HR scatter vs. absorption of 4ITM07

LIGO

G. Billingsley, LIGO-T080072

The contamination are also of points, and can be easily removed by wiping.

LIGO HR absorption of a steering mirror from LLO HAM1 chamber

- In addition to some high absorption points, there is a high uniform absorption (~25 ppm).
- This uniform absorption can not changed by regular cleaning process.
- The bulk side is also measured, which shows a consistent uniform absorption.
- There is almost no high absorption point at bulk side.

G080162-00-D

Workshop on Optical Coating , March 20-21, 2008

Summary

- By using an integrating sphere (1.5°<θ<78°, or 250 9100 cm ⁻¹), the TIS measurement was carried out with six LIGO-I mirrors. Substantial difference of the micro-roughness cut-off edge is observed between the measured mirrors, in which the two super polished ETMs show the best result.
- More work is needed to understand the discrepancy between the measured micro roughness cut-off and the estimation calculated by the substrate micro roughness measurement.
- The HR absorption of the 4ITM07 swapped out from LHO was measured to be about 13ppm, which is caused by some removable high absorption particle-like contamination. This result is consistent with that of the following witness samples.
- The HR coating of a steering mirror from LLO HAM1 chamber was found to have an unusual more or less uniform absorption of about 30 ppm. Further investigation is underway.