

Effects of Ultraviolet Irradiation on LIGO Mirror Coating

Ke-Xun Sun, Nick Leindecker, Ashot Markosyan, Sasha Buchman, Roger Route, Marty Fejer, Robert Byer, Helena Armandula, Dennis Ugolini, Gregg Harry

Workshop on Optical Coatings in Precision Measurements California Institute of Technology, Pasadena CA March 20-21, 2008

LISA, LIGO and Adv LIGO Charging Problems

	Time dependence of electric charge on the test mass	Charging	LISA	LIGO	Adv LIGO
1000		Mechanism	Space Weather	Cosmic Ray	Cosmic Ray
Ē			Caging Separation	Triboelectric	Triboelectric
	man and a little of the second	Charging Rate	10 ⁻¹¹ C/day (max)	10 ⁻⁷ C/day	10 ⁻⁶ C/day
/ units	,	Test Mass	2 kg	10 kg	40 kg
le, arbitrary		Displacemen t Sensitivity	10 ⁻¹¹ m	10 ⁻¹⁸ m	10 ⁻²⁰ m
charg	the same series	Frequency	0.03 mHz~1 Hz (1 mHz)	10Hz ~ 1kHz (100Hz)	30~2 kHz (30Hz)
0.1		Figure of Problem	13	25	6.8 X 10 ⁴
0	10 20 30 40 50 time, days	$(C/M\omega^2)/\Delta x$			

Moscow Data

Advanced LIGO may see more charging problems instead of less

Charge Management In Precision Experiments

GP-B charge management

- **Critical to GP-B mission success**
 - > Initial gyro lifting-off
 - > Continuous charge management during science measurement

n LIGO UV charge management budget

- $Q_c \sim 10^{-7} \text{ C/m}^2$ commonly cited
- Charging rate $Q_c \sim 10^{-7}$ C/day
- $N_e \sim 10^{12}$ electrons/day
- Photoelectric "Q. E.": η~10⁻⁶
- UV photons required: N=10¹⁷
- $P_{UV} = Nhc/\lambda T = 8.9 \text{x} 10^{-6} \text{ W}$
- $P_{UV} \sim 10 \ \mu W$ (average power over a day)
- Dynamic Range ~ 100
 - $P_{UV} \sim 1 \text{ mW}$ (Peak power)

Stanford experiences in charge management: GP-B, ST7, LISA (MGRS)

UV Light Source UV LED & Gas Lamps

Ke-Xun Sun, Brett Allard, Scott Williams, Sasha Buchman, and Robert. L. Byer, "LED Deep UV Source for Charge Management for Gravitational Reference Sensors," presented at Amaldi 6 Conferences on Gravitational Waves, June 2005, Okinawa, Japan, Class. Quantum Grav. **23** (2006) S141–S150

UV_Caltech_Charging_Friday_080321.ppt

G080150-00-Z

AC Charge Management

UV LED and bias voltage modulated at 1 kHz

UV Illumination Configurations

- Direct illumination
 - UV mercury lamp is routinely used for attachment removal
 - UV LED has sufficient power for cw direct illumination
 - Works for removing charges Metal: GPB, ST7, LISA **Dielectric: Glasgow, Trinity, GEO,** Moscow
 - UV irradiation may cause problem to coating

UV Caltech Charging Friday 080321.ppt

- Indirect illumination ۲
 - Au coating on non-critical portions of test mass and suspension structure (P. Willem: 0.1 µm Au coating on barrel, opaque to UV)
 - Photoelectric effect on Au surface has been utilized in GP-B, ST-7, LISA
 - Establish electric field to herd the charges to Au coating
 - UV photoelectric effect continues to remove Charges
 - Higher throughput in charge control
 - No UV illumination on dielectric

- Three samples irradiated with UV light
 - **REO #2:** Ta₂O₃/SiO2 alternative layers
 - Adv LIGO (LMA: 14 TaO:Ta₂O₃/SiO2)
 - REO #1: Ta2O3/SiO2 alternative layers
 - > UV LED
 - > Xeon Lamp
 - > Heat/Cool cycles
- Absorption loss measured with PCI
 - Alternate measurement with UV exposure
 - During measurement the samples are controlled under vacuum

7

The Initial UV Illumination Geometry

8

UV Exposure and Loss Measurement

- Alternate UV exposure and loss measurement
- UV exposure was conducted in vacuum 10^{-7} tor
- UV effect after in air exposure may be more recoverable
- Total UV exposure 16 J/cm² (254 hours)
- Equivalent time span for LIGO charge management: 4~40 months

UV Effect on Initial LIGO Sample (REO #2)

UV Irradiation: Adv LIGO Sample: Spatial Profile

TaO:Ta₂O₃/SiO₂ 30 Layers

UV_Caltech_Charging_Friday_080321.ppt

12

UV Irradiation: Adv LIGO Sample: Temparo Profile

13

UV 'De-ionizer' as a Cleanser is Problematic

REO Sample #1, Deionizer Exposure in Air with Oxygen

Time Heals the Wound?

Looking back

- LIGO charge management is complicated by the dielectric core
- We are still committed to deliver a functional charge management solution to Advanced LIGO
- Devise indirect UV schemes for charge management
 - UV light does not illuminate the LIGO test mass material
 - UV light only produce electrons nearby LIGO test mass
 - External voltage (few volts) to steer electrons to equalize the potential
 - UV LED passed vacuum operation tests (ongoing for 3 months by far)
- Conductive coatings, wires, mass
 - Fluoride (CaF₂, MgF₂ Often used in UV optics for lithography at 179~193 nm)
 - Patterned Au thin film on the barrel
- Ion and electron beam
 - Alternate ion beam and electron beam
- Neutralize the charges on test mass surface

Indirect Photoelectric Effect for Charge Management

- UV (violet) light not to directly illuminate the test mass
- Illuminate only segmented gold coating on barrel
- Allow electric charge to build up as a potential and field configuration to drive and deplete the charge on the test mass metal coating
- Then remove the charge from the metals

Conductive Coating and Test Mass

100

CaO:CaF₂

- Fig. 1. Electrical conductivity of CaF₄ crystals. Curve 1: $\bigcirc\bigcirc\bigcirc$ raw material melted for 2 hours in products of Teflon pyrolysis, and dried previously for 48 hours; Curve 2: $\bigcirc\bigcirc\bigcirc$ ibid, dried for 24 hours only; Curve 3: $\triangle \triangle \triangle$ raw material melted for 2 hours in Teflon pyrolysis products; Curve 4: **EXE** CaF₄ crystal prepared at IKAN, Moscow, analyzed 0.01 mole % of oxygen; Curve 5: **●●●** CaF₄ crystal with 0.1 mole % CaO
- Electrical conductivity improved by mixing in oxygen CaO

20

Ion and Electron Beam Charge Management

S Buchman1, R L Byer, D Gill1, N A Robertson and K-X Sun, "Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams," *Class. Quantum Grav.* **25** (2008) 035004

Ricardo suggested ionized argon gas by flow discharge

- Charges on LIGO mirror Coating MUST be mitigated, especially for Advanced LIGO
- LIGO charge management present unique challenges beyond that from LISA
- UV light removes charges
- Systematic UV exposure effect measurement on LIGO and Adv LIGO samples
- UV effects on Ta₂O₃ based coating is small but real for bare dielectric coating
- Indirect UV illumination may be more effective and mostly safe for LIGO coatings
- Explore alternative charge management strateges

