

$\mathcal F\text{-}\mathsf{Statistic}$ Searches for White Dwarf Binaries in the Mock LISA Data Challenges

John T. Whelan

john.whelan@aei.mpg.de

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Potsdam

24th Pacific Coast Gravity Meeting 2008 March 21 G080135-00-Z

< □ > < 同 > < 回 > < 回

Outline

LISA Data Analysis White Dwarf Binary Search Conclusions

- The LISA Mission
- Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC Pipeline and Results

The LISA Mission MLDCs

LISA: Gravitational Wave Detection in Space

- Planned Joint NASA-ESA Mission: to launch 2018 or later
- 3 spacecraft will orbit sun in 5 mio km & track each other w/lasers
- Laser phase data combined to simulate 3 IFOs (2 indep): "Time-Delay Interferometry" (TDI): *X*(*t*), *Y*(*t*), *Z*(*t*)

Credits: NASA/JPL; MPI for Gravitational Physics (AEI)/Einstein Online

イロト イポト イヨト イヨト

The LISA Mission MLDCs

Mosk LISA Data Challenges?

John T. Whelan john.whelan@aei.mpg.de

 $\mathcal F\text{-}\mathsf{Stat}$ Searches for WDBs in the MLDCs, LIGO-G080135-00-Z

< ≣ →

ъ

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The LISA Mission MLDCs

Mock LISA Data Challenges

- LISA data analysis presents unusual challenges; Need to coördinate searches for different types of signals Need plan worked out before LISA flies
- LISA International Science Team (LIST) has organized MLDCs to build community expertise Extract simulated signals from simulated LISA noise

Challenge	Dates	Results Presented		
MLDC1	2006 Jun-Dec	GWDAW 11, Potsdam		
MLDC2	2007 Jan-Jun	GR 18 / Amaldi 7, Sydney		
MLDC1B	2007 Jul-Dec	GWDAW 12, Boston		
MLDC3	2008 Jan-Dec	GWDAW 13, Arecibo		

 Search for periodic signal from white-dwarf binaries by AEI team of Reinhard Prix, JTW & Deepak Khurana

F-Stat Search for periodic GWs MLDC Pipeline and Results

Periodic GW Signals

Oscillating mass quadrupole generates periodic grav waves

- Searching for sinusoidal signals is easy: Fourier transform $\tilde{x}(f)$ & look for peaks
- But signal won't be sinusoidal:
 - Motion of detector doppler-shifts signal
 - Change in orientation produces amplitude modulation
- Signal parameters:
 - 4 Amplitude params: GW amp, initial phase, inclination & orientation of WD orbit (or NS spin); Combine into {*A^μ*}
 - 3+ Doppler params: intrinsic *f*, ecliptic lat & lon of source (also spindown if appropriate); represent by θ

イロト イポト イヨト イヨ

\mathcal{F} -Stat Search for Periodic GWs (JKS 1998)

- Measured strain (= noise + signal) is (implicit $\sum_{n=1}^{4}$) $\mathbf{x}(t; \mathcal{A}, \theta) = \mathbf{n}(t) + \mathcal{A}^{\mu} \mathbf{h}_{\mu}(t; \theta)$
 - $n(t) \& h_{\mu}(t; \theta)$ depend on detector, A does not
- Jaranowski, Królak, Schutz 1998: Log-likelihood

$$-\int \frac{|\widetilde{x}(f) - \mathcal{A}^{\mu}\widetilde{h}_{\mu}(f)|^{2}}{S_{n}(f)} df + \int \frac{|\widetilde{x}(f)|^{2}}{S_{n}(f)} df = -\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + 2\mathcal{A}^{\mu}x_{\mu}$$

guadratic in \mathcal{A} ; maximize analytically

- log-likelihood maximized by amplitude parameters
 - $\mathcal{A}^{\mu}_{MLE} = \mathcal{M}^{\mu\nu} \mathbf{x}_{\nu}$; max value is $2\mathcal{F} = \mathbf{x}_{\mu} \mathcal{M}^{\mu\nu} \mathbf{x}_{\nu}$
- *F*-stat search technique:
 - Make a grid of doppler params θ (freq & sky pos)
 - For each choice of θ , calculate 2 \mathcal{F} from data
 - High values are candidate sources w/amp params A_{MLE}

Currently the basis of LIGO searches for spinning neutron stars

F-Stat Search for periodic GWs MLDC Pipeline and Results

Challenge 1(B).1.1: Isolated Binaries

Good sky position even w/approx long-wavelength response More accurate Rigid adiabatic resp needed for amp params

F-Stat Search for periodic GWs MLDC Pipeline and Results

Galactic Binaries Injected in MLDC2

Challenge 2.1 has 26 million galactic WD binaries, of which 59401 designated as "bright" sources

 $\mathcal{F}\text{-}\mathsf{Stat}$ Search for periodic GWs MLDC Pipeline and Results

Secondary Maxima in Doppler Parameter Space

True signals identified by coïncidence btwn TDI vars

F-Stat Search for periodic GWs MLDC Pipeline and Results

Pipeline for Prix/Whelan/Khurana MLDC Searches

John T. Whelan john.whelan@aei.mpg.de

 $\mathcal F\text{-}\mathsf{Stat}$ Searches for WDBs in the MLDCs, LIGO-G080135-00-Z

 \mathcal{F} -Stat Search for periodic GWs MLDC Pipeline and Results

Overview of Galactic Signals Recovered (LW)

Found many signals, but still missed some bright ones (especially at higher *f*), using long-wavelength response

John T. Whelan john.whelan@aei.mpg.de F-Stat Searches for WDBs in the MLDCs, LIGO-G080135-00-Z

 \mathcal{F} -Stat Search for periodic GWs MLDC Pipeline and Results

Overview of Galactic Signals Recovered (RA)

Rigid adiabatic response improves signal recovery Loudest "misses" now found

John T. Whelan john.whelan@aei.mpg.de

 $\mathcal F\text{-}\mathsf{Stat}$ Searches for WDBs in the MLDCs, LIGO-G080135-00-Z

F-Stat Search for periodic GWs MLDC Pipeline and Results

Amplitude Accuracy w/RA

Amp param errors comp to statistical expectations

John T. Whelan john.whelan@aei.mpg.de

 $\mathcal F\text{-}\mathsf{Stat}$ Searches for WDBs in the MLDCs, LIGO-G080135-00-Z

F-Stat Search for periodic GWs MLDC Pipeline and Results

Statistics of Galactic Signals Recovered

Focus on sources w/expected $2\mathcal{F}>40$

Frage	Signals	Found		False	
rieqs	$ (\mathcal{A} ^2 > 40) $	LW	RA	LW	RA
0–5 mHz	4443	982	1025	1	2
5–10 mHz	1966	652	822	5	3
10–15 mHz	163	68	133	1	0
15–20 mHz	7	2	7	0	0
20–27 mHz	3	0	2	2	0
Total	6582	1704	1989	9	5

Improved response improves efficiency Future searches may subtract found bright signals & iterate

< < >> < <</>

Conclusions

- Mock LISA Data Challenge Searches (Prix, JTW, Khurana):
 - $\mathcal F\text{-statistic}$ method to find doppler-shifted periodic signals applied to mock LISA data
- Had to model LISA response beyond long-λ limit to get accurate amplitude param recovery & find higher-frequency signals
- Weaker signals can be mistaken for secondary maxima partially overcome by coïncidence condition
 Probably need signal subtraction to go further

Stay tuned for future MLDCs!

イロト イポト イヨト イヨト