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Background, motivations, and approach

 Laser-beam shape

— Affects thermal noise

[Levin, Phys. Rev. D 57, 659, 1998; Bondu et al., Phys. Lett. A 246,
227, 1998; Liu and Thorne, Phys. Rev. D 62, 122002, 2000]

— Can be controlled to a certain extent

e Basic question
— What is the “optimal” (i.e., minimum noise) beam shape?

e Some answers
— Formulation of the optimization problem — a nasty one!
— Derivation of some (absolute and realistic) bounds

— Assessments
e Potential noise reductions w.r.t current status

» Goodness of suboptimal solutions (e.g., nearly-Bessel-Gauss
beams [Bondarescu, PhD Thesis, 2007])



Current status and research trends

Reference solution: Gaussian beams (GBS)

Mesa beams (MBs), Mexican Hat (MH) mirrors

* Reduction (coating noise) of a factor ~2 w.r.t. GBs
[D’Ambrosio, Phys. Rev. D 67,102004, 2003]

0.06

Higher-order Gauss-Laguerre (HOGL) modes
» Keep standard (spherical) mirrors
o EXcitation issues

[Mours et al., Class. Quantum. Grav. 23, 5777, 2006]

Hyperboloidal-beams, nearly-spheroidal mirrors

« Span from nearly-flat to nearly-concentric MBs
[Bondarescu and Thorne, Phys. Rev. D 74 082003, 2006]

» Analytic representations [Galdi et al., Phys. Rev. D. 73,
127101, 2006]

6 » Potential noise reduction of ~30% w.r.t. MBs [Lundgren

et al., Phys. Rev. D 77, 042003, 2008]
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Theoretical framework

[O’Shaughnessy, Class. Quantum. Grav. 23, 7627, 2006; Lovelace, Class.
Quantum Grav. 24, 4491, 2007]

Thermal noise vs. beam shape

Coating (Brownian
& Thermoelastic)

S=C / It {H Uil)ﬂ (h)}2 dr, =<1 Substrate Brownian (SiO,)
0

—1 Substrate Thermo-
elastic (Al,O3)

HIF](&) = /m F(C)Jo(EC)CdC Hankel transform (HT)
0

2

D(r)

/

= beam intensity distribution at mirror

Assumptions:

- axisymmetric field distribution
- Infinite (thick) test-mass
- low frequency limit




Theoretical framework (cont’d)
[Siegman, Lasers, Univ. Sci. Books, Mill Valley, US, 1998]

v (r) = / K(r,7")®(r")r'dr"  (Iintegral eq., eigenvalue problem)
0

7 1 ar! a2 2
ff(-n-r’)—*-fo(m )*{I{L [L“?-(T‘Hh(-rf) Gl

L\ L oL |
h(r) =  mirror profile (departure from flatness)
a = mirror radius

L = cavity length; k =27/ = wavenumber

Mapping between : a mirror profile  h(r)
a set of eigenstates Q[h]={y,,, D}



Theoretical framework (cont’d)

Light spillover (diffraction) beyond mirror should be limited:
L] = f [d(r)|*rdr <2,  (e.g., Lppm for Adv-LIGO)
(will be assumed throughout)

It is always possible to make / - D(r) ‘2 rdr — 1
. !

S0 as to rewrite the diffraction loss constraint as
) 2 .

(selects diffraction-loss admissibile eigenstates)



Optimal (minimum-noise) beam/mirror profile

Formal mirror optimization procedure

« Assume suitable (e.g., C*) functional class A for h(r)
 Denote as Q[h] the subset of the eigenstate set Q[h]:
L=< L

« Find h" € A such that :

min S[g] < min S[¢], VheA:hzh

peQ[h’] p<Q2c[h]



..A nasty problem

For most h(r) , the field integral equation can only

be attacked numerically —> need to parameterize
sought function h(r) Interms of afinite number of

unknowns
“best” (minimum size) representation ?

:> size of problem ?

Concerns about numerical optimization
— Parameterization-dependent problem’s ill-posedness

— Non-convexity
« Local minima (robust optimization algorithms required)

“Exact” solution could be technologically unfeasible



Scalings

Scda_lleld (dirg_ensionless)
_ — — - radial coordinate, wave-
r=rla, k=ax, ¢(r)=ad(ar) number and field

— IDCI

S =

/ RITH{H [|(D|2] (E)}Q di , S=a @%CS  Scaled noise PSD
Jo

¥o(F) = wmNpexp |[— V(7)) Hy lexp (—2V) o] (T NpT

Scaled field equation
5 = yexp (1kL)

|
HIFIO = [ FOME
Scaled half-round-trip eigenvalue V0

Clipped (finite radius mirror) Hankel Tr.
T —2

TN . i 9 2
A V(F) = kh(ar) - t ;r ,  Np= 2/\F - ;_IL
Mirror-profile dependent phase (unknown)

Fresnel number of cavity




Absolute (lower) noise PSD bounds

« Cope with diffraction-loss constraint by forcing ¢(f) to
vanish outside [0,1] (no-diffraction, compact support beams)

e Don’t care about field (elgenvalue) equation. Just seek for
an intensity profile f ()= \¢(r)\ >0 for which PSD is
minimum

e Translates into simple (constrained) variational calculus
problems, with unique exact solutions
[Pierro et al., Phys. Rev. D 76, 122003, 2007]

f(M=(q+2)[1-72] ~1<q<l qeZ 0<F<1

S = 2‘“11“(3 +1jr(ﬂ + 2)
2 2

yielding:




Absolute (lower) noise PSD bounds (cont’'d)
[Pierro et al., Phys. Rev. D 76, 122003, 2007]

Define: 2 f
Stationary 50 QLf +&&, u]-QLf, 4]
(variational) = =Ilim &= a

=0, v&elL[0,]]: jé(x)xdx:o

-0 E

weak solution: 99|,

5Q - ng,zWHl[f],EQ’ZHl[ﬂﬂw{f?q”Hl[ﬂ2}

L ./ . v\this being positive,
Variational solution obtained solution yields a
equating this piece to zero minimum




Absolute (lower) noise PSD bounds (cont’'d)
[Pierro et al., Phys. Rev. D 76, 122003, 2007]

should vanlsh

use (see, I qlz\]q/2+1(l(')\] (K'r) 2q/2r(q+lj, 0<r<l -1<¢g<l1

Ryzhik & 0 z

Gradhstein -0/2zq:1 1

Tables) 2] ) = rdr'1-r*)%J (xr"), 0<r<1
2a®) = Ty | 7O €T 3T,

to get: j dex™d, (KT) j Frar'(L-12)"2), (kF") = 2°T2(q/ 2 +1)
0 0
whence: f=u291-F2)"21?(q/2+1), [f|=1e u=(q+2)2°T(q/2+1)

ged



For more detalls
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Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed
as an effective device to reduce internal (mirror) thermal noise in advanced gravitational-wave interfero-
metric detectors. Based on some recently published analytic approximations (valid in the infinite-test-
mass limit) for the Brownian and thermoelastic mirror noises in the presence of arbitrary-shaped beams,
this paper addresses certain preliminary issues related to the optimal beam-shaping problem. In particular,
with specific reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) experiment,
absolute and realistic lower bounds for the various thermal-noise constituents are obtained and compared
with the current status (Gaussian beams) and trends (mesa beams). indicating fairly ample margins for
further reduction. In this framework, the effective dimension of the related optimization problem, and its
relationship to the critical design parameters are identified. physical-feasibility and model-consistency
issues are considered, and possible additional requirements and/or prior information exploitable to drive

the subsequent optimization process are highlighted.

DOL: 10.11053/PhysRevD. 76122003

L INTRODUCTION

In all currently operating (and possibly future ) interfero-
metric gravitational-wave detectors, the overall limit sen-
sitivity of the instrument is bounded by the noise floor,
which, in the most interesting observational frequency

" - i
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PACS numbers: 04.80.Nn, 07.60Ly, 41.85.Ct, 42.55.—f

led to the development of a cavity prototyvpe with non-
spherical “Mexican hat”™ (MH) profile mirrors [11,12].
Alternative (nearly concentric [13], nearly spheroidal
[14-16]) designs have heen subsequently proposed to
cope with the inherent tilt-instabilityv of the originally
concelved nearly flat configuration. Also, use of higher-
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Absolute (lower) noise PSD bounds (cont’'d)
[Pierro et al., Phys. Rev. D 76, 122003, 2007]

Bopr (T)

4.0

3.0 -

Remarks/caveats

Optimal field-intensity profile for coating
noises flat as expected; for substrate
noises, not exactly flat, and not obvious

Obtained (scaled) field-intensity profiles
yield absolute but likely loose lower
bounds for the noise PSDs

The zero-diffraction field assumption
made is clearly violated by any solution
of the field equation

How can we introduce the diffraction-
loss and other physical-feasibility
constraints ?



Spatial band-limitedness of cavity eigenmodes
[Pierro et al., Phys. Rev. D 76, 122003, 2007]

From the obvious properties:

1, 0<7<1
0, elsewhere ’

H(HIf) = f

by applying ’H operator to both sides of field (eigenvalue) equation
we obtain

H |[pexp (V)] (nNprF) =i

gt

The Hankel transform (wavenumber spectrum) of exp[:V (T)]a(T)
has compact support , vanishing outside [0, tNy]. Accordingly
exp[:V (M)]g(T), and hence ¢, cannot vanish identically for T > 1

TN -
{ _HH (Fyexp [—iV (F)] ¢ (T)
8 \ ~ 7




The PSWEF basis

[Slepian et al., Bell System Tech. Journal 40, 43, 65, 1961; ibid. 41, 1295, 1962]

 The (real valued) eigenstates of a confocal-spherical finite-
mirror cavity) play a special role

— Prolate-spheroidal wave-functions (PSWFs)
No(7) = itNpH [p] (TNpF)

« Among all L? bases, they allow to approximate any exact
solution of the field equations (corresponding to an arbitrary
mirror profile), using the minimum number N, of terms for
any prescribed L? error & (minimum-redundant basis)

« Technically, N, is referred to as the number of degrees of
freedom of our cavity fields at the resolution level €
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Peculiar properties of PSWFs

1 W
] ~
-, A v, 1 o0
i - .. A“ '*\ i = d_ o =), A% (=) 5
. ] A "‘ 1 rar ‘;‘/'n(r )‘f/-;m(r ) — Umn
L] A v ] o 0
-« o+ A NS double-orthogonality : <
1E-10 — . .""'- N 5 1 ,
" / rdren (T) e, (T) = |10 0mn
« i : . Jo
e A
_ I
B0 . ‘1 ~
I b~ "-, A7 . . . 2 2
N ) = ‘. P _
: 1ND5 v ol / r‘d?“‘\f/n(?“)‘ =1 ‘T)n‘
I " '-._..ND=10 * 1
: . ! ﬂ
1E-30 PR R N N E N

0 5 1o 15 20 25 3
m

PSWF eigenvalues drop PSWFs turn from almost perfectly localized
exponentially from ~1 :> in T <1 to almost fully delocalized as order
to ~ O as order exceeds Ny exceeds Ny



Peculiar properties of PSWFs

Np=12 (a=16cm)
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Infinite-mirror (Gauss-Laguerre) modes also shown dashed



Diffraction-loss constraint

« PSWF expansion (bandlimited approximation)

.'Hr?'_ |.

dJEI_{F} — Z E'nzggnz{'r_-}

e =()

« Diffraction loss constraint rephrases into (in view of double-
orthogonality)

.'1'??' - |.

£ [dJEL] = Z {1 o |ﬂ.’]‘!|2]|{:I.’IE|2

= Step behavior

Mo " (=0for M; > Np)

= {1 - |ﬁ."|rj"]-—l|3} Z |f-lng|1 - {l o |ﬁ.ﬂr}}—l|2}

i =()
=1
 The diffraction loss constraint dictates the effective dimension
M; ~ Ny of our optimization problem (number of unknown

coefficients in the PSWF modal expansion of the cavity field)



Bandlimited approximants

e Construct L? approximants of the (unphysical) fields
obtained from minimum-noise variational-solutions

— Suitable linear combinations of the lowest Ny PSWFs

* Unlike compact-support variational solutions, these fields
will satisfy both the diffraction-loss constraint and the
spatial-bandlimitedness condition

* While there is NO guarantee that such fields may be
supported by some mirror profile, the corresponding
noise bound are expected to be tighter



Bandlimited approximants (cont’d)
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How far did we reach?
[Pierro et al., Phys. Rev. D 76, 122003, 2007]

¢ S a8 Sen/SG S s Sop/Ser f S /S
-1 1.5708 1.145 2.965 2.043 2.591 1.785
0 2 1.313 6.907 3.238 5.256 2.465
1 4.712 1.552 13.658 4.454 8.801 2.870

Parameters: a=16c¢cm, diff. loss=1ppm

« Sensible potential improvement

— Coating noises: Reduction of a factor ~2.5 w.r.t. MBs
(~5.3 w.r.t. GBs)

* Yes, but how close to these lower bounds a physically-feasible
profile can get?

— Genetic-optimization results indicate reductions of a factor ~1.2



A candidate (sub)optimal solution
[Bondarescu, PhD Thesis, 2007]

o “Brute-force” numerical optimization

— Gauss-Laguerre expansion at the beam waist (physically-feasible
by construction) [Galdi et al., Phys. Rev. D 73, 127101, 2006

— Constrained gradient-flow
— Problem dimension consistent with our theoretical estimates

* Result: Nearly Bessel-Gauss beams, nearly conical mirrors

Amplitude height [1]

Nearly-conical

“| Nearly Bessel-Gauss \\

0.025 0.05 0.075 0.1 0125  0.15



A candidate (sub)optimal solution (cont'd)
[Bondarescu, PhD Thesis, 2007]

e Global or local optimum?
— Impossible to assess self-consistently, but
— Results very close to our estimated lower bounds
« Coating noise reduction (w.r.t. MBs) of a factor ~2.3
* |f not optimum, certainly very good
 Openissues

— Increased sensitivity (w.r.t. MH) to
« Mirror fabrication tolerances (especially at large scales)
— Figure error needs to be reduced by a factor ~10
o Mirror tilt
— Needs to be controlled at the level of ~ 3 nrad
« Mirror translation
— Needs to be controlled at the level of ~ 4um

— Non-Gaussian optics likely required
— Parametric instabilities?



Conclusions and outlook

e Absolute and realistic bounds for thermal noise reduction via
beam-shaping derived

« Effective dimension of the problem related to the EM degrees of
freedom Ny=2a?/ AL

e Large gap between the best currently available solutions
(MB, HOGL) and the estimated lower bounds

— Margins for further substantial noise reduction
* Reduction factor ~2.5 (w.r.t. MBs) for coating noises

* (sub)optimal candidate solution [Bondarescu, PhD Thesis, 2007]
— Nearly-Bessel-Gauss beams, nearly-conical mirrors
— Reduction of a factor ~2.3 in coating noise PSD
— Technologically challenging



Conclusions and outlook (cont’d)

e Current studies
— Validation against finite-test-mass numerical solution

e [Future directions
— Define a meaningful set of optimality criteria
* Heterogeneous, competing constraints

— Multiobjective optimization via robust (e.g., genetic)
algorithms
» Tradeoff (Pareto-type) curves



