
Giuseppe Castaldi (1), Vincenzo Galdi (1), Vincenzo Pierro (1), 
Innocenzo M. Pinto (1), Juri Agresti (2), and Riccardo DeSalvo (3)

(1) Waves Group, University of Sannio, Benevento, Italy
(2) IFAC-CNR, Florence, Italy 
(3) California Institute of Technology, Pasadena, CA, USA

Perspectives on Beam-Shaping Optimization for 
Thermal-Noise Reduction in Advanced LIGO: 
Bounds, Profiles, and Critical Parameters 

LIGO-G080083-00-R



Background, motivations, and approach

• Laser-beam shape
– Affects thermal noise

[Levin, Phys. Rev. D 57, 659, 1998; Bondu et al., Phys. Lett. A 246, 
227, 1998; Liu and Thorne, Phys. Rev. D 62, 122002, 2000]

– Can be controlled to a certain extent

• Basic question
– What is the “optimal” (i.e., minimum noise) beam shape?

• Some answers
– Formulation of the optimization problem – a nasty one!
– Derivation of some (absolute and realistic) bounds
– Assessments

• Potential noise reductions w.r.t current status
• Goodness of suboptimal solutions (e.g., nearly-Bessel-Gauss 

beams [Bondarescu, PhD Thesis, 2007])  



• Reference solution: Gaussian beams (GBs)
• Mesa beams (MBs), Mexican Hat (MH) mirrors

• Reduction (coating noise) of a factor ~2 w.r.t. GBs
[D’Ambrosio, Phys. Rev. D 67,102004, 2003]

• Higher-order Gauss-Laguerre (HOGL) modes
• Keep standard (spherical) mirrors
• Excitation issues 

[Mours et al., Class. Quantum. Grav. 23, 5777, 2006]

• Hyperboloidal-beams, nearly-spheroidal mirrors
• Span from nearly-flat to nearly-concentric MBs

[Bondarescu and Thorne, Phys. Rev. D 74 082003, 2006]
• Analytic representations [Galdi et al., Phys. Rev. D. 73, 

127101, 2006]
• Potential noise reduction of ~30% w.r.t. MBs [Lundgren 

et al., Phys. Rev. D 77, 042003, 2008]

Current status and research trends
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Coating (Brownian 
& Thermoelastic)

Substrate Brownian (SiO2)

Substrate Thermo-
elastic   (Al2O3)

Hankel transform (HT)

beam intensity distribution at mirror≡

[O’Shaughnessy, Class. Quantum. Grav. 23, 7627, 2006; Lovelace, Class. 
Quantum Grav. 24, 4491, 2007]

Assumptions: - axisymmetric field distribution
- infinite (thick) test-mass
- low frequency limit
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Theoretical framework

Thermal noise vs. beam shape



[Siegman, Lasers, Univ. Sci. Books, Mill Valley, US, 1998]

Mapping between :  a  mirror profile 
a set of eigenstates

( )h r
[ ] { , }n nh γΩ = Φ

( )h r ≡ mirror profile (departure from flatness)

L ≡ cavity length;                               wavenumber2 /k π λ= ≡

(integral eq., eigenvalue problem)

mirror radiusa ≡

Theoretical framework (cont’d)



(e.g., 1ppm for Adv-LIGO)

It is always possible to make

so as to rewrite the diffraction loss constraint as

(selects diffraction-loss admissibile eigenstates)

Light spillover (diffraction) beyond mirror should be limited: 

(will be assumed throughout)

Theoretical framework (cont’d)
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( )h r

Formal mirror optimization procedure

Optimal (minimum-noise) beam/mirror profile

• Assume suitable  (e.g., C∞ )  functional class  Λ for

• Denote as  Ωc[h] the subset of  the eigenstate set  Ω[h]:  

• Find              such that :



…A nasty problem

• For  most ,  the  field integral  equation  can only 
be attacked numerically      need to parameterize 
sought function            in terms of  a finite number of  
unknowns

• Concerns about numerical optimization
– Parameterization-dependent  problem’s ill-posedness
– Non-convexity

• Local minima (robust optimization algorithms required)

• “Exact” solution could be technologically unfeasible 

( )h r

( )h r

“best” (minimum size)  representation  ?
size of problem ?



Scaled field equation

/ , , ( ) ( )r r a a r a ar
S

κ κ φ= = = Φ

= ( 2)qS a C S− +=,

Scaled (dimensionless) 
radial coordinate, wave-
number and field

Scaled noise PSD

Clipped (finite radius mirror) Hankel Tr.
Scaled half-round-trip eigenvalue

Mirror-profile dependent phase (unknown)

,

Fresnel number of cavity

Scalings



yielding:

Absolute (lower) noise PSD bounds
• Cope with diffraction-loss constraint  by  forcing           to 

vanish outside [0,1] (no-diffraction, compact support beams)
• Don’t care about field (eigenvalue) equation. Just seek for 

an intensity profile                              for which PSD is 
minimum  

• Translates into  simple (constrained) variational calculus 
problems, with  unique exact solutions
[Pierro et al., Phys. Rev. D 76, 122003, 2007]
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Absolute (lower) noise PSD bounds (cont’d)
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Define:

Stationary
(variational)
weak solution:

this being positive,
solution yields a 
minimum

Variational solution obtained
equating this piece to zero

[Pierro et al., Phys. Rev. D 76, 122003, 2007]
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Absolute (lower) noise PSD bounds (cont’d)
[Pierro et al., Phys. Rev. D 76, 122003, 2007]



For more details



Optimal field-intensity profile for coating 
noises flat as expected; for substrate
noises, not exactly flat, and not obvious

Obtained (scaled) field-intensity profiles
yield  absolute  but   likely  loose lower 
bounds for the noise PSDs

The zero-diffraction field assumption 
made is  clearly violated by any solution 
of the field equation

How can we introduce the diffraction-
loss and other physical-feasibility
constraints ?

Remarks/caveats
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Absolute (lower) noise PSD bounds (cont’d)
[Pierro et al., Phys. Rev. D 76, 122003, 2007]



From the obvious properties:

by applying        operator to both sides of field (eigenvalue) equation
we obtain

,

The Hankel transform (wavenumber spectrum) of                           
has compact support , vanishing outside  [ 0, πND ].  Accordingly

, and hence φ, cannot vanish identically for          .

exp[ ( )] ( )V r rι φ

1r >exp[ ( )] ( )V r rι φ

Spatial band-limitedness of cavity eigenmodes
[Pierro et al., Phys. Rev. D 76, 122003, 2007]



[Slepian et al., Bell System Tech. Journal 40, 43, 65, 1961; ibid. 41, 1295, 1962]
The PSWF basis

• The (real valued) eigenstates of a confocal-spherical finite-
mirror cavity)  play a special role
– Prolate-spheroidal wave-functions (PSWFs)

• Among all L2 bases, they allow to approximate any exact 
solution of the field equations  (corresponding to an arbitrary 
mirror profile), using the minimum number   Nε of terms  for  
any prescribed  L2 error  ε (minimum-redundant basis)

• Technically, Nε is referred to as the number of degrees of 
freedom of our cavity fields at  the resolution level ε



ND=1
ND=5

ND=10

ND=20

PSWF  eigenvalues drop
exponentially from   ∼ 1
to ∼ 0  as order exceeds ND

double-orthogonality :

PSWFs turn from almost perfectly localized
in           to almost fully delocalized as order 
exceeds ND

1r ≤

Peculiar properties of PSWFs
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ND=12 (a=16cm)

infinite-mirror (Gauss-Laguerre) modes also shown dashed
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Diffraction-loss constraint  

• PSWF expansion (bandlimited approximation)

• Diffraction loss constraint rephrases into (in view of  double-
orthogonality)

• The diffraction loss constraint  dictates the  effective dimension
MT ∼ ND of  our optimization problem  (number of unknown 
coefficients in the PSWF modal expansion of the cavity field)

=1

Step behavior
(=0 for MT > ND)



Bandlimited approximants

• Construct L2 approximants  of  the (unphysical)  fields 
obtained from  minimum-noise variational-solutions
– Suitable linear combinations of the  lowest  ND PSWFs

• Unlike compact-support variational solutions, these fields  
will  satisfy both the diffraction-loss constraint and the 
spatial-bandlimitedness condition

• While there is NO guarantee that such fields may be 
supported by some mirror profile, the corresponding 
noise bound are expected to be tighter



2number of modes 2 /T DN N a Lλ= ≈ =

Bandlimited approximants (cont’d)
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How far did we reach?

• Sensible potential improvement
– Coating noises: Reduction of a factor ~2.5 w.r.t. MBs

(~5.3 w.r.t. GBs)

• Yes, but how close to these lower bounds a physically-feasible
profile can get?
– Genetic-optimization results indicate reductions of a factor ~1.2

Parameters: a=16cm, diff. loss=1ppm

[Pierro et al., Phys. Rev. D 76, 122003, 2007]



A candidate (sub)optimal solution

• “Brute-force” numerical optimization
– Gauss-Laguerre expansion at the beam waist (physically-feasible 

by construction) [Galdi et al., Phys. Rev. D 73, 127101, 2006]
– Constrained gradient-flow
– Problem dimension consistent with our theoretical estimates

• Result: Nearly Bessel-Gauss beams, nearly conical mirrors

[Bondarescu, PhD Thesis, 2007]

Mesa

Spherical
Nearly Bessel-Gauss

Nearly-conical

MH



A candidate (sub)optimal solution (cont’d)

• Global or local optimum?
– Impossible to assess self-consistently, but
– Results very close to our estimated lower bounds

• Coating noise reduction (w.r.t. MBs) of a factor ~2.3
• If not optimum, certainly very good

• Open issues
– Increased sensitivity (w.r.t. MH) to 

• Mirror fabrication tolerances (especially at large scales)
– Figure error needs to be reduced by a factor ~10

• Mirror tilt
– Needs to be controlled at the level of ~ 3 nrad

• Mirror translation
– Needs to be controlled at the level of ~ 4µm

– Non-Gaussian optics likely required
– Parametric instabilities?

[Bondarescu, PhD Thesis, 2007]



• Absolute and realistic bounds for thermal noise reduction via 
beam-shaping derived

• Effective dimension of the problem related to the EM degrees of 
freedom ND=2a2/ λL

• Large gap between  the best currently  available  solutions 
(MB, HOGL) and the estimated lower bounds 
– Margins for  further substantial noise reduction

• Reduction factor ~2.5 (w.r.t. MBs) for coating noises

• (sub)optimal candidate solution [Bondarescu, PhD Thesis, 2007]
– Nearly-Bessel-Gauss beams, nearly-conical mirrors
– Reduction of a factor ~2.3 in coating noise PSD
– Technologically challenging

Conclusions and outlook



Conclusions and outlook (cont’d)

• Current studies
– Validation against finite-test-mass numerical solution

• Future directions
– Define a meaningful set of optimality criteria

• Heterogeneous, competing constraints
– Multiobjective optimization via robust (e.g., genetic) 

algorithms
• Tradeoff (Pareto-type) curves


