

Optimization of Coating Design for Reduced Thermal Noise

J. Agresti, G. Castaldi, R. de Salvo, V. Galdi, I.M. Pinto, V. Pierro

LIGO Lab / Caltech TWG/Univ. of Sannio at Benevento & INFN

Coating Optimization Method:	Stacked Doublet Coatings Barebone Optimization Code Coating Noise Model; How Did We Get Here - Genetic Selection Another Look at the Optimum
Results:	Prototype(s) Robustness Losses Event Rate Boost Usable Reflectance Windows
Perspectives:	M-ary Coatings Band-gap Engineered Coatings
LIGO G080082-00-R	

AdLIGO NOISE BUDGET (Quarter Wavelength Design)

LIGO G080082-00-R

BINARY COATING OPTIMIZATION IN A NUTSHELL, I

AMONG ISO – TRANSMITTIVE ALTERNATIVE DESIGNS, PICK OPTIMAL ONE, IN TERMS OF THERMAL NOISE

WARNING : OPTIMAL SHOULD BE ALSO GOOD, IN TERMS, OF

- DESIGN ROBUSTNESS [TOLERANCE W.R.T. DEPOSITION ERRORS & MATERIAL PARAMETERS.UNCERTAINTIES].
- OPTICAL LOSSES;
- REFLECTANCE ON OTHER USABLE WAVELENGTHS
- ANGULAR ACCEPTANCE, etc.

LIGO G080082-00-R

Prescribe transmittance : $\tau_P = 1 - |\Gamma_p|^2$ Find smallest N_d : $\tau_{OWL}(N_d) = \tau^* \leq \tau_P$ Do $N_d = N_d + 1$, find (z_I, z_H) : $\begin{cases} z_L + z_H = 1/2 \\ \tau(z_H, z_H, N_d) = \tau^* \end{cases}$ while $PSD(z_I, z_H, N_d) \leq PSD(z_I, z_H, N_d - 1)$ Tweak (trim) topmost L-layer for maximum reflectance Tweak (trim) bottom H-layer to bring back reflectance

to design value (trims noise further)

LIGO G080082-00-R

End layer tweaking

Three basic components should be included:

BROWNIAN - Key references:

[G. Harry, LIGO-T040029-00-R, 2004]

THERMOELASTIC - Key references:

[V.B. Braginsky and S.A. Vyatchanin, ArXiv:cond-mat/0302617, postprint of Phys. Lett. A312 (2003) 244; contains important corrections; M.M. Fejer et al., PRD-70 (2004) 082003]

THERMOEFRACTIVE - Key references:

[V.B. Braginsky, et al., Phys. Lett. A 271 (2000) 303; I.M. Pinto et al., LIGO T-070159-00-Z (2007), A. Gretarsson, LIGO G-08151-00-R (2008).

LIGO G080082-00-R

LIGO G080082-00-R

LIGO G080082-00-R

COATING LOSS ANGLE : APPROXIMATE

LIGO G080082-00-R

[G. Harry, LIGO-T040029-00-R, 2004]

Effective fluctuations of the test-mass (coated mirror) front - face position with respect to the mirror center of mass may occur as an effect of

-Thermal expansion of the coating layers (thermoelastic

effect),

 $\Delta x^{(TE)} = \alpha_{eff} d_{tot} \Delta T$ effective coating / expansion coeff.

coating thickness

-Thermal variations of the refraction indexes $n_{H,L}$ of the coating materials (thermorefractive effect),

$$\Delta x^{(TR)} = \beta_{eff} \lambda_0 \Delta T$$

effective thermorefractive coefficient optical wavelength (vacuum)

LIGO G080082-00-R

THERMO-OPTIC NOISE COEFFICIENTS (PLAIN TANTALA)

LIGO G080082-00-R

SPECTRAL DENSITY FOR $\Delta x^{(TE,TR)}$

LIGO G080082-00-R

LIGO G080082-00-R

Total Coating Noise PSD

$$S_{\Delta x}^{(tot)}(f) = S_{\Delta x}^{(B)}(f) + \left(\frac{\Delta x^{(TE)}}{\Delta T} + \frac{\Delta x^{(TR)}}{\Delta T}\right)^2 S_{\Delta T}(f)$$

Brownian-structural;

Thermally - driven elastic and refractive fluctuations. *may likely add incoherently or :* indeed, the temperature in the coating does *not* vary

?

- on the space-scale (thickness) of the coating,
- on the time scales whereby the field in the coating builds up.

LIGO G080082-00-R

SD COATINGS: HOW DID WE GET HERE ?

Educated ignorance attitude

- no a-priori assumption on structure;
- easy inclusion of heterogeneous design constraints;

GA - engineered minimum noise *binary* coatings show trend toward non - QWL quasi - Bragg ($z_L + z_H = 0.5$) stackeddoublet (SD) configurations;

Deviations from trend are confined to fewest end - layers (first, last);

Suggests sequential design recipe :

- a) Design minimum-noise SD;
- b) Tweak terminal layers;

LIGO G080082-00-R

LSC / VIRGO Joint Meeting, 17-20 March, 2008, Caltech Workshop on Optical Coatings in Precision Measurements

GA-optimized 20ppm transmittance prototype. z_L and z_H histograms after 10⁴ generations.

BINARY COATINGS MINIMUM - NOISE BRAGG SD SYNTHESIS

QUASI - OPTIMAL BINARY COATINGS SD SYNTHESIS : BRAGG DOUBLETS

LIGO G080082-00-R

Coating Optimization Method:	Stacked Doublet Coatings Barebone Optimization Code Coating Noise Model; How Did We Get Here: Genetic Selection Another Look at the Optimum
Results:	Event Rate Boost Prototype(s) Robustness Losses Usable Reflectance Windows
Perspectives:	M-ary Coatings Band-gap Engineered Coatings
LIGO G080082-00-R	

 \blacksquare A 13% reduction in PSD_{floor} boosts the event rate by 23%, etc.

LIGO G080082-00-R

1ppm OPTIMIZED COATING : DOPED TANTALA

(Total noise budget included)

au = 0.9727 ppm	ER boost @100Hz
Plain Tantala, QWL	
Plain Tantala, OPT	1.38
Doped Tantala, QWL	1.54
Doped Tantala, OPT	2.05

LIGO G080082-00-R

TNI PROTOTYPE ODISSEY

TNI PROTYPES TESTED

ROBUSTNESS - I

		N =	= 16	N :	=17	N = 18	
γ	{(Plain { z _L , z _H } .330169, 0.169831}	Tweaked ${z_L, z_H}$ ${0.330169, 0.169831}$ ${z_1, z_N}$ ${0.0338288, 0.157079}$	Plain { <i>z_L</i> , <i>z_H</i> } {0.345676, 0.154324}	Tweaked ${z_L, z_H}$ ${0.345676, 0.154324}$ ${z_1, z_N}$ ${0.0405062, 0.139003}$	Plain { <i>z_L</i> , <i>z_H</i> } {).357797, 0.142203}	Tweaked ${z_L, z_H}$ ${0.357797, 0.142203}$ ${z_1, z_N}$ ${0.0457719, 0.124762}$
10		0.896	0.871	0.901 (+0.005)	0.876 (+0.005)	0.912 (+0.016)	0.886 (+0.015)
7		0.866 (+0.003)	0.847 (+0.004)	0.863	0.843	0.867 (+0.004)	0.847 (0.004)
5		0.842 (+0.012)	0.827 (+0.013)	0.833 (+0.003)	0.817 (+0.003)	0.830	0.814
	Table of PSD values relative to QWL design with HWL cap (N=14), for various values of γ in						

 $S_x^{(D)} = C[z_L + \gamma z_H]$ (z_L , z_H = layer thicknesses in units of local wavelength) high/low index layers: optimum (minimum poise) syntheses highlighted in yellow. Numb

N = number of high/low index layers; optimum (minimum noise) syntheses highlighted in yellow. Numbers in brackets are $\{z_L, z_H\}$ (plain design; first line in tweaked design) and $\{z_I, z_N\}$ (second line in tweaked design). The N=17 design yields the minimum degradation (in brackets) compared to optimum design,

if γ is allowed to change throughout the interval [5,10].

LIGO G080082-00-R

Random uniform layer-thickness errors, $|\delta \ell| \leq 1nm$, 1ppm prototype.

LIGO G080082-00-R

OPTICAL LOSSES

(1ppm prototype).

Accumulated Optical Power Loss

Optical Power Loss

LIGO G080082-00-R

FURTHER USABLE REFLECTANCE WINDOWs

•No need to constrain noise - optimization in order to get useful power reflectance at other (laser) wavelength(s).

•Optimized design no worse than QWL in terms of power - reflectance at other (laser) wavelengths (worse but still OK @ 946nm).

•No critical dependence of result on material parameters.

	76 [IIIII]	0,	0		0	1.2		1.0.	
		QWL	OPT	QWL	OPT	QWL	OPT	QWL	OPT
ETM	$R_{TE,TM}(0 \deg)$	0.024	0.046	0.56	0.40	9.11	0.15	0.045	0.19
	$R_{TE}(\pm 5 \deg)$	0.023	0.049	0.60	0.31	0.11	0.19	0.050	0.18
	$R_{TM}(\pm 5 \deg)$	0.022	0.048	0.61	0.28	0.10	0.19	0.048	0.17
ITM	$R_{TE,TM}(0 \mathrm{dep})$	0.039	0.079	0.83	0.46	0.031	0.24	0.033	0.19
	$R_{TE}(\pm 5 \deg)$	0.040	0.077	0.82	0.42	0.036	0.23	0.030	0.20
	$R_{TM}(\pm 5 \deg)$	0.039	0.076	0.81	0.40	0.035	0.23	0.029	0.20

LIGO G080082-00-R

Nominal power transmittances @ 1064nm, normal incidence: 6.324 ppm (ETM), 14172 ppm (ITM)

Coating Optimization Method:	Barebone Optimization Code Coating Noise Model; How Did We Get Here: Genetic Selection
Results:	Event Rate Boost Prototype(s) Robustness Losses Usable Reflectance Windows
Perspectives:	M-ary Coatings Band-gap Engineered Coatings

Im[n]

•Insertion of a (different) dielectric layer in a stacked doublet coating boosts reflectance provided $\text{Im}[(n_{i+1} - n_i)/(n_i - n_{i-1})] < 0$ (*i*=1 is top layer) [J. I. Larruquert, Opt. Comm. 206 (2002) 259]

Yields simple material selection rule ("turn clockwise").

 $\operatorname{Re}[n]$

May result into reduced coating noise Material downselection **TBD**.

•Use materials with *different* properties (contrart, losses) in topmost / bottom layers to reduce coating thickness without increasing optical loss [P.G. Verly, Appl.Opt. 37 (1998) 7327]

•Stack of *sub-wavelength* layers "equivalent" to *homogeneous* medium [E. Tuncer, Physical Review B 71 (2005) 012101]. *E*,*n*, ϕ *etc.* obtained from appropriate *mixture* formulas. Way to engineering *new* materials ?

LIGO G080082-00-R

"Photonic Band Gap Engineering" [Yablonovitch, Opt. Lett.23 (1998) 1648]

Nearly *omni-directional (and wideband) reflection* obtainable [D. Lusk and F. Placido, Thin Solid Films, 392 (2005) 226];

Expected to *mitigate misalignment instability* in (otherwise stable) spherical / confocal mesa - beam (or hyperboloidal beam) cavities w. coated mirrors

Perfect transmission bands also obtainable [R.W. Peng et al., Appl. Phys. Lett. 80 (2002) 3063]

May permit building two (almost independent) interferometers in a single beam pipe)...

LIGO G080082-00-R

- •Coating thickness optimization *almost mandatory* to minimize coating noise when using doped Tantala, yielding a substantial boost (> 30%@ 100Hz) in the expected event rate, as compared to QWL design.
- •Optimal design *almost the same for both* the incoherent and the coherent thermooptic noise formula.
- •Optimal design is *robust* against thickness deposition errors, and can be made *judiciously tolerant* w.r.t. uncertainties in the relevant material parameters.
- •Among all proposed coating noise reduction techniques (new materials, cryogenic mirrors, flat-top beams) thickness optimization is the *cheapest reliable option*

LIGO G080082-00-R

- Design of optimized doped-Tantala mirrors for TNI.
 - Sensitivity study w.r.t. to uncertainties in material params.
 - Identification of most tolerant quasi-optimal design Funding requested to INFN.
- M-ary and sub-wavelength coatings optimization study started.
- Band-gap engineered optimised coatings study restarted.

LIGO G080082-00-R

