

GRB-triggered searches for gravitational-wave inspiral signals in LIGO data

Nickolas Fotopoulos (UWM) for the LIGO Scientific Collaboration gwdaw12@mit, Cambridge, MA, USA 2007-12-13

Short GRBs: a primer

- GRBs are categorized by the duration of their observed emission.
 Short GRBs emit for ≤2 seconds;
 long GRBs emit for ≥2 seconds.
- The tidal disruption of a NS near the final stages of inspiral with a companion NS or low-mass BH may produce a short GRB.
- Some short GRBs are believed to originate from Soft Gamma Repeaters (SGRs).

NS-NS merger simulation
Credit: Daniel Price and Stephan Rosswog

@ New Scientist

Benefits of externally triggered searches

An external trigger will help the plausibility of first detection.

Coincident EM/GW observation will tell us more about the source.

GRB 070201

- Short GRB detected by several space-based instruments
- Directional uncertainty covers part of M31. D_{M31}≈770 kpc!
- Energetics suggested that if the source is in M31, it is probably not a canonical short GRB. An SGR is more likely.
- LIGO detectors H1 and H2 online
- See also Isabel Leonor's talk on the unmodeled GW burst analysis

Larger: M31 in UV from GALEX Inset: M31 in optical from SDSS

GRB 070201 segment selection

Highly conservative choices
Used large off-source region for background estimation

GRB 070201 used ~60000s

Background estimate

Estimated from 323 trials 2.7 candidates expected

Results

2.7 candidates expected0 candidates observed

Inspiral Upper limits

Inspiral in M31 ruled out with >99% confidence

The rest of S5: overview

- 213 GRBs (212 with sky localization)
- 32 short GRBs.
- 26 short GRBs while two or more GW detectors were online.
- 21 short GRBs with >14000 seconds of available data in at least two LIGO instruments (probably fewer after data quality cuts).

Plan: Analyze these 21 short GRBs, then the rest

New requirements: Generalization and automation

http://www.uoregon.edu/~ileonor/ligo/s5/grb/online/S5grbs_list_valid.html

All-S5 Changes

GRB 070201	All S5
• two detectors only	arbitrary number of detectors
• simple frequentist	additional population statement
	• Bayesian?
 detection efficiency took CPU- decades to evaluate 	 importance sampling of mass- distance space?
copious off-source data available	 background estimate from counting time-shifted coincidences?
• -120/+60 second on-source segment	• new values

Summary

• LIGO observations have ruled out GRB 070201 being a compact binary inspiral in M31 with >99% confidence. We cannot exclude the event having been an SGR in M31.

http://arxiv.org/abs/0711.1163

- We are now finalizing a search procedure for all short GRBs in S5 data. Generalizations and automation for analysis work are almost complete.
- Our interpretation framework has a lot of room for improvement. In addition to improving individual detection/upper limit evaluations, we would like to make a statement about the GRB population as a whole.

