
An Evidence Based 
Approach to Inspiral 

Followups

GWDAW-12 Boston       LIGO DCC: G070836-00-K



Aim of this work

The goal of this work is to find a way to calculate the 
probability that an inspiral candidate signal is really a 
gravitational wave.

We use model selection within the Bayesian framework to 
compute the odds ratio between competing models.

For the purpose of development of the algorithm, we used 
Newtonian waveforms and synthetic Gaussian noise, but it 
should be readily extensible to post-Newtonian analysis 
and the use of real data.
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Bayesian Hypothesis Testing
We want to know the probability ratio of an inspiral signal 
(HS) being present in the data {d} to that of the data being  
just noise (HN).

To calculate marginal likelihood or “evidence” of signal 
model, marginalise the PDF over all model parameters.

This is the same approach used in Clark et al 2007 & 
Searle et al 2007.

P (d|HS , I) =

∫
Θ

p(d|θ, HS , I)p(θ|HS , I)dθ

P (HS |d, I)

P (HN |d, I)
=

P (HS |I)

P (HN |I)

P (d|HS , I)

P (d|HN , I)

Prior odds “Bayes Factor”
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Computing Evidence

P (d|HS , I) =

∫
Θ

p(d|θ, HS , I)p(θ|HS , I)dθ

As a proof of concept, perform this analysis on Newtonian 
waveform in stationary synthetic Gaussian noise.

Integrate over 4 parameters using a probabilistic algorithm.

Using flat priors and a Gaussian model of the noise in the 
frequency domain, likelihood function is

Can be extended to any parametric model!

P (d|HS , I) =

∫
p(A,M, tc, φc|HS , I)p(d|A,M, tc, φc, HS , I)dAdMdtcdφc

p(d|HS , I) =

∫

Θ
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Results - Gaussian noise only
• Produce 100 different 
realisations of 
Gaussian stationary 
noise with no signal.

• The algorithm returns 
a Bayes Factor < 1. 
This indicates that the 
noise model is 
preferred.

• However with these 
inconclusive results 
the final odds ratio 
will be dominated by 
the prior.

• Code runs in <2 
hours for 100s data at 
512 Hz Nyquist 
frequency.
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Gaussian + Signal, SNR 1 to 7

• Signals with varying 
SNR injected into 
13800 data points 
of synthetic 
Gaussian noise.

• Algorithm clearly 
detects signals, and 
gives large Bayes 
factors for 
significant SNRs.

• The prior odds 
ratio then 
determines 
whether this is 
significant or not.
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Gaussian + Poissonian Noise Only

• Using 100 Gaussian 
data sets, now inject 
points with amplitude 
100 and Poisson time-
domain PDF Pois(0.1).

• The algorithm does 
not present any Bayes 
factor >1 for the 
signal hypothesis on 
the data.

• Robust against 
random glitches in the 
data.

• How does this affect 
detection of signals?
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Injections in Gaussian + Poissonian noise

• Signals were injected 
into Poissonian + 
Gaussian noise at 
increasing SNR.

• Bayes Factor still 
favours the signal 
model at SNR > 4, 
but compared to the 
pure Gaussian case 
sensitivity is reduced.

• However, the signal 
model is not triggered 
by the Poisson noise, 
so should not cause 
false alarms.
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Gaussian noise + instrumental ringdown
• Non-astrophysical 

ringdown signals with 
different decay times (1s 
and 10s) are injected into 
the data at increasing 
SNRs, to mimic the effects 
of noise.

• Above SNR=100, does the 
10s ringdown start to 
trigger the inspiral model, 
whereas the 1s injection 
does not affect the results.

• Only very loud ringdowns 
will trigger inspiral model, 
by which point neither 
model accurately reflects 
the data.

• Introducing a ringdown 
model would allow a 
natural way to distinguish 
this type of signal.
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Conclusions

• Bayesian hypothesis testing provides a clear and 
conceptually straightforward way of determining the 
odds of a candidate signal being real.

• Ideally suited to being used in the follow up of stage of 
an analysis.

• Calculation of the full Bayesian evidence can be done 
efficiently.

• Can be expanded to use other signal models.
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Ongoing work

• Add Post-Newtonian waveforms from LAL.
• Analyse large amounts of IFO data to fully understand the 
response of algorithm to the types of noise encountered.  
Find suitable prior odds ratio from background studies?

• Integrate with Bayesian follow-up framework for
• Multi-IFO coherent analysis

• Automatic use of any inspiral waveform

• Integration into the inspiral pipeline

GWDAW-12 Boston       LIGO Doc: G070836-00-K


