A χ^2 veto for Continuous Wave Searches

12th Gravitational Wave Data Analysis Workshop December 2007

> L. Sancho de la J. A.M. Sintes (LIGO-G070826-00-Z)

Outline

Motivation

- Hough Transform
- . The χ^2 veto
- Results

Motivation

Motivation

- Hough Transform
- The $\chi^2 \, test$
- Results

■ Type of source → Continuous Sources

- Very small amplitude ($h_0 \sim 10^{-26}$)
- Long integration time needed to build up enough SNR
- Relative motion of the detector with respect to the source (amplitude and frequency modulated)
- System evolves during the observational period
- Type of search \rightarrow All-sky search
 - Computational cost increases rapidly with total observation time.

Reduce the number of candidates to be followed up \rightarrow Improve the sensitivity keeping the computational cost.

The Hough Transform

Robust pattern detection technique.

Motivation

- The χ^2 test
- Results

• We use the Hough Transform to find the pattern produced by the **Doppler modulation** (due to the relative motion of the detector with respect to the source) and **spin-down** of a GW signal in the time – frequency plane of our data:

$$f(t) - \hat{f}(t) = \hat{f}(t) \frac{\vec{v}(t) \cdot \vec{n}}{c}$$
Detector RF SSB

 $\hat{f}(t) = \hat{f}_0 + \dot{f}(t - t_0) + \dots$

• For isolated NS the expected pattern depends on the parameters: $\{\alpha, \delta, f, \dot{f}, ...\}$

0000

The Hough Transform

- Procedure:
- Hough Transform
- The χ^2 test

Motivation

Results

- 2 Take the FT of each segment and calculate the corresponding normalized power in each case (ρ_k).
- **③** Select just those that are over a certain threshold ρ_{th} .

 $\bullet \bullet \circ \circ \circ$

The Hough Transform

Motivation

Procedure:

Hough Transform

The χ^2 test

Results

Hough Transform

Hough Transform Statistics

• The probability for any pixel on the *time - frequency* plane of being selected is:

Results

The χ^2 test

Motivation

• After performing the Hough Transform N SFTs, the probability that the pixel $\{\alpha, \delta, f, \dot{f}, ...\}$ has a number count **n** is given by

Need of the χ^2 discriminator

We define the significance of a number count as

 $\langle n \rangle$ and σ are the expected mean and variance for pure noise)

The χ^2 test

Hough Transform

Motivation

- Results
- The Hough significance will be large if the data stream contains the desired signal, but it can also be driven to large values by spurious noise.

 $s = \frac{n - \langle n \rangle}{\sigma}$

- We would like to discriminate which of those could actually be from a real signal.
- It is important to reduce the number of candidates in a Hierarchical search \rightarrow improvement in sensitivity for a given finite computational power.
- Use the Hough Statistics information to veto the disturbances:

The χ^2 test for the Weighted Hough Transform

Motivation	 Divide the SFTs into p non-overlapping blocks of data 						
							TOTAL
Hough Transform	# SFTs	N_1	N_2	N ₃		$\mathbf{N}_{\mathbf{p}}$	Ν
The χ ² test	Number count	n_1	n ₂	n ₃		n _p	n
Results	Sum weights	$\approx \frac{N}{p}$	$\approx \frac{N}{p}$	$\approx \frac{N}{p}$		$\approx \frac{N}{p}$	Ν

2) Analyze them separately

3) Construct a χ^2 statistic looking along the different blocks to see if the Hough number count accumulates in a way that is consistent with our hypothesis.

$$\begin{split} &\langle n \rangle = \sum_{i=1}^{N} w_i \eta_i = \sum_{j=1}^{p} \langle n_j \rangle \\ &\sigma^2 = \sum_{i=1}^{N} w_i^2 \eta_i (1 - \eta_i) \\ &\langle n_j \rangle = \sum_{i \in I_j} w_i \eta_i \\ &\sigma_{n_j}^2 = \sum_{i \in I_j} w_i^2 \eta_i (1 - \eta_i) \end{split} \\ & \Delta n_j \equiv n_j - n \frac{\sum_{i \in I_j} w_i \eta_i}{\sum_{i=1}^{N} w_i \eta_i} \begin{cases} \langle \Delta n_j \rangle = 0 \\ p \\ \sum_{j=1}^{p} \Delta n_j = 0 \end{cases} \\ & \chi^2 = \sum_{j=1}^{p} \frac{\left(n_j - n(\sum_{i \in I_j} w_i \eta_i) / (\sum_{i=1}^{N} w_i \eta_i)\right)^2}{\sum_{i \in I_j} w_i^2 \eta_i (1 - \eta_i)} \\ & \eta^* = \frac{n}{N} \left(\int_{\chi^2} \sum_{j=1}^{p} \frac{\left(n_j - n(\sum_{i \in I_j} w_i \eta_i) / N\right)^2}{\eta^* (1 - \eta^*) \sum_{i \in I_j} w_i^2} \right) \\ & = \text{ If Signal present: small } \chi^2 \qquad \text{ If due to spurious noise: } big \quad \chi^2 \end{split}$$

 $\bullet \bullet \circ \circ \circ$

The χ^2 test: χ^2 – *significance* plane characterization

The χ^2 test: χ^2 – *significance* plane characterization

Results

Software Injected Signals

The χ^2 test: χ^2 – *significance* plane characterization

Motivation

Software Injected Signals

- 1 month of LIGO data.
- Example for p = 16.
- 22 small 0.8 Hz bands between 50 and 1000 Hz were analyzed.
- In each 'quiet' band we do 1000 Monte Carlo injections for different h_0 values covering uniformly all the sky, *f-band*, *spindown* \in [-1·10⁻⁹ 0] Hz s⁻¹, and pulsar orientations (9000 MC 91-100 Hz)
- Find the best fit in the selected bands \rightarrow fitting coefficients should be frequency dependent.

Veto ~ 92% of the frequency bins with significance greater than 7

Instrumental Disturbances

Motivation Hough Transform The χ^2 test

Results

Hardware Injected Signals

Hough Transform

The χ^2 test

Motivation

Results

Conclusions and future work

Motivation

Hough Transform

The χ^2 test

Results

• We have developed a χ^2 veto for the Hough Transform in the CW search and we have characterized it in the presence of a signal and in the presence just of noise (Gaussian noise and also instrumental perturbations).

• We have proven the efficiency of this veto using 1month of LIGO data.

• Under development : This χ^2 veto is being implemented for an all-sky search using the LIGO S5 data.

