

$\mathcal F\text{-}\mathsf{Statistic}$ Searches for White Dwarf Binaries in the Mock LISA Data Challenges

John T. Whelan

john.whelan@ligo.org

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Potsdam

(in collaboration with Reinhard Prix & Deepak Khurana)

Cardiff University Gravity Group Seminar 2007 November 2 G070778-00-Z

< ∃ > <

Outline

LISA and Gravitational Wave Searches

- Crash Course in Gravitational Wave Physics
- The LISA Mission
- Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC1 Pipeline and Results
- MLDC2 Pipeline and Results

Gravitational Waves LISA MLDCs

LISA and Gravitational Wave Searches

Crash Course in Gravitational Wave Physics

- The LISA Mission
- Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC1 Pipeline and Results
- MLDC2 Pipeline and Results

< 🗇 🕨

- < ≣ → <

Motivation

LISA and GW Searches White Dwarf Binary Search Conclusions Gravitational Waves LISA MLDCs

- In Newtonian gravity, force dep on distance btwn objects
- If massive object suddenly moved, grav field at a distance would change instantaneously
- In relativity, no signal can travel faster than light
 - \longrightarrow time-dep grav fields must propagate like light waves

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gravitational Waves LISA MLDCs

Gravity as Geometry

Minkowski Spacetime:

$$ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}$$
$$= \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix}^{\text{tr}} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

• General Spacetime:

$$ds^{2} = \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix}^{\mathrm{tr}} \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{10} & g_{11} & g_{12} & g_{13} \\ g_{20} & g_{21} & g_{22} & g_{23} \\ g_{30} & g_{31} & g_{32} & g_{33} \end{pmatrix} \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Gravitational Waves LISA MLDCs

Gravitational Wave as Metric Perturbation

 For GW detection, spin-2 "graviton tensor" h_{μν} is difference btwn actual metric g_{μν} & flat metric η_{μν}:

$$g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u}$$

 $(h_{\mu\nu}$ "small" in weak-field regime, e.g. for GW detection)

- Gauge: transverse $(\eta^{\nu\lambda}\partial_{\lambda}h_{\mu\nu}=0=h_{0\mu}=h_{\mu0}=0)$ & traceless $(\eta^{\mu\nu}h_{\mu\nu}=0)$
- E.g. Plane wave propagating in z direction

$$\{h_{\mu
u}\} = \begin{pmatrix} 0 & 0 & 0 & 0 \ 0 & h_{+} & h_{\times} & 0 \ 0 & h_{\times} & -h_{+} & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} e^{i2\pi f(z-t)}$$

 h_+ and h_{\times} are amplitudes of "plus" and "cross" pol states.

Gravitational Waves LISA MLDCs

Effects of Gravitational Wave

Fluctuating geom changes distances btwn particles in free-fall:

イロト イポト イヨト イヨト

э

Gravitational Waves LISA MLDCs

Gravitational Wave Generation

- Generated by moving/oscillating mass distribution
- Lowest multipole is quadrupole
- Classic example: orbiting binary system

(e.g., Binary Pulsar 1913+16 - Observed energy loss agrees w/GW prediction)

Gravitational Waves LISA MLDCs

Measuring GWs w/Laser Interferometry

John T. Whelan john.whelan@ligo.org

 $\mathcal F\text{-}\mathsf{Stat}$ Searches for WDBs in the MLDCs, G070778-00-Z

Gravitational Waves LISA MLDCs

LISA and Gravitational Wave Searches

Crash Course in Gravitational Wave Physics

The LISA Mission

Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC1 Pipeline and Results
- MLDC2 Pipeline and Results

・ 同 ト ・ ヨ ト ・ ヨ

Gravitational Waves LISA MLDCs

LISA: Interferometry in Space

- Planned Joint NASA-ESA Mission: to launch 2018 or later
- 3 spacecraft will orbit sun in 5 mio km & track each other w/lasers
- Laser phase data combined to simulate IFO: "Time-Delay Interferometry" (TDI)

Credits: NASA/JPL; MPI for Gravitational Physics (AEI)/Einstein Online

イロト イポト イヨト イヨト

Gravitational Waves LISA MLDCs

Differences Between LISA and LIGO

• Diff noise sources & sizes mean diff frequency ranges

Credit: NASA/JPL

Gravitational Waves LISA MLDCs

Differences Between LISA and LIGO

- Diff noise sources & sizes mean diff frequency ranges
- LIGO data noise-dominated; can seek one source at a time LISA data will contain many strong sources;
 - \longrightarrow must worry about signal extraction
- LISA to observe GWs w/λ comparable to arm length
 → At higher frequencies, simple IFO picture breaks down & response depends on propagation direction

$$\widetilde{X}(f) = rac{\widetilde{h}(f)}{R(f)} = rac{\widetilde{h}(f): \widetilde{d}(f,\widehat{k})}{R(f)}$$

Gravitational Waves LISA MLDCs

LISA Response

- LISA spacecraft 1, 2, 3
- Arm lens L_1 , L_2 , L_3 all $\approx L = 5$ million km vary due to GW & orbit
- TDI vars *X*, *Y*, *Z* comb links btwn sc to cancel laser noise
- Convert into "strains" $\widetilde{h}^{X}(f) = R(f)\widetilde{X}(f) = \overrightarrow{h}(f): \overrightarrow{d}^{X}(f, \widehat{k})$ where in long- λ limit $\overrightarrow{d} \approx \frac{1}{2}(\widehat{n}_{2} \otimes \widehat{n}_{2} - \widehat{n}_{3} \otimes \widehat{n}_{3})$ (etc. for Y & Z)

Gravitational Waves LISA MLDCs

LISA and Gravitational Wave Searches

- Crash Course in Gravitational Wave Physics
- The LISA Mission
- Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC1 Pipeline and Results
- MLDC2 Pipeline and Results

< 🗇 🕨

- 씨 크 > - 씨 크

Gravitational Waves LISA MLDCs

Mock LISA Data Challenges

- LISA data analysis presents unusual challenges; Need to coördinate searches for different types of signals Need plan worked out before LISA flies
- LISA International Science Team (LIST) has organized MLDCs to build community expertise Extract simulated signals from simulated LISA noise
- MLDC1 ran from June-December 2006; results announced at GWDAW 11, Dec 2006, Potsdam, Germany
- MLDC2 ran from January-June 2007; results announced at GR 18 / Amaldi 7, Jul 2007, Sydney, Australia
- MLDC1b running from July-December 2007; results to be announced at GWDAW 12, Dec 2007, Boston

Gravitational Waves LISA MLDCs

First Mock LISA Data Challenge

Data sets:

- Challenge 1.1: White Dwarf Binaries: Periodic Sources
- Challenge 1.2: Super-Massive Black Hole Inspirals
- Challenge 1.3: Extreme Mass Ratio Inspirals (deadline postponed until MLDC2)
- Entries submitted by ten groups
- AEI group of Reinhard Prix & JTW searched for WD binaries w/*F*-statistic method

Gravitational Waves LISA MLDCs

Second Mock LISA Data Challenge

- Data sets:
 - Challenge 1.3: Extreme Mass Ratio Inspirals
 - Challenge 2.1: Galactic Binaries (30 Million)
 - Challenge 2.2: "Whole Enchilada": Galaxy + EMRIs + BHB
- Entries submitted by thirteen groups
- AEI group of Reinhard Prix & JTW searched for WD binaries w/*F*-statistic method (improved pipeline to distinguish sources)

Outline

LISA and GW Searches White Dwarf Binary Search Conclusions *F*-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

LISA and Gravitational Wave Searches

- Crash Course in Gravitational Wave Physics
- The LISA Mission
- Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC1 Pipeline and Results
- MLDC2 Pipeline and Results

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- < ≣ → <

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Periodic GW Sources

- Searching for sinusoidal signals is easy: Fourier transform x̃(f) & look for peaks
- But signal won't be sinusoidal:
 - Motion of detector doppler-shifts signal
 - Change in orientation changes projection \vec{h} : \vec{d}
- Signal parameters:
 - 4 Amplitude params: GW amp, initial phase, inclination & orientation of WD orbit (or NS spin); Combine into {*A^μ*}
 - 3+ Doppler params: intrinsic *f*, ecliptic lat & lon of source (also spindown if appropriate); represent by θ

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Searching for Periodic GWs

- Measured strain (= noise + signal) is (implicit $\sum_{\mu=1}^{4}$) $x(t; A, \theta) = n(t) + A^{\mu}h_{\mu}(t; \theta)$ $n(t) \& h_{\mu}(t; \theta)$ depend on detector, A does not
- Given data *x* w/noise spectrum $S_n(f)$ can calculate $x_{\mu} = \int \frac{\tilde{h}_{\mu}(f)^* \tilde{x}(f)}{S_n(f)} df$ and $\mathcal{M}_{\mu\nu} = \int \frac{\tilde{h}_{\mu}(f)^* \tilde{h}_{\nu}(f)}{S_n(f)} df$ for each choice of doppler params θ
- Most likely signal (for a given θ) minimizes

$$\int \frac{|\widetilde{\mathbf{x}}(f) - \mathcal{A}^{\mu}\widetilde{h}_{\mu}(f)|^{2}}{S_{n}(f)} df = \mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} - 2\mathcal{A}^{\mu}\mathbf{x}_{\mu} + \int \frac{|\widetilde{\mathbf{x}}(f)|^{2}}{S_{n}(f)} df$$

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

The \mathcal{F} -Stat Method (JKS 1998)

Jaranowski, Królak, Schutz 1998:

- Most likely signal (for given θ) maximizes $-\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + 2\mathcal{A}^{\mu}\mathbf{x}_{\mu}$
- Maximized by amplitude parameters $\mathcal{A}_{MLE}^{\mu} = \mathcal{M}^{\mu\nu} \mathbf{x}_{\nu}$ where $\mathcal{M}^{\mu\nu}$ is matrix inverse of $\mathcal{M}_{\mu\nu}$; max value is $2\mathcal{F} = \mathbf{x}_{\mu} \mathcal{M}^{\mu\nu} \mathbf{x}_{\nu}$
- *F*-stat search technique:
 - Make a grid of doppler params θ (freq & sky pos)
 - For each choice of θ , calculate 2 \mathcal{F} from data
 - High values are candidate sources w/amp params \mathcal{A}_{MLE}

Currently the basis of LIGO searches for spinning neutron stars including Einstein@Home

イロト イポト イヨト イヨト

Outline

LISA and GW Searches White Dwarf Binary Search Conclusions

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

LISA and Gravitational Wave Searches

- Crash Course in Gravitational Wave Physics
- The LISA Mission
- Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC1 Pipeline and Results
- MLDC2 Pipeline and Results

< □ > < 同 > < 回 > < 回

F-Stat Search for periodic GWsMLDC1 Pipeline and ResultsMLDC2 Pipeline and Results

Pipeline for Prix/Whelan MLDC1 Search

F-Stat Search for periodic GWsMLDC1 Pipeline and ResultsMLDC2 Pipeline and Results

Pipeline for Prix/Whelan MLDC1 Search

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Pipeline for Prix/Whelan MLDC1 Search

F-Stat Search for periodic GWsMLDC1 Pipeline and ResultsMLDC2 Pipeline and Results

Challenge 1.1.1: Isolated Binaries

Challenge	f	lat	lon	Δf	$\phi_{\sf sky}$
1.1.1a	1.1 mHz	0.30 π	1.62 π	1.7 nHz	34.8 mrad
1.1.1b	3.0 mHz	-0.03 π	1.47 π	0.8 nHz	7.1 mrad
1.1.1c	10.6 mHz	-0.04 π	1.48 π	0.2 nHz	4.4 mrad

Good sky pos; amp params get worse as LWL breaks down

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Challenge 1.1.4: Source Confusion

Stuff many signals into small freq range

Recover 21/45; sky position determination becoming unreliable as "freq bins" start to overlap

Outline

LISA and GW Searches White Dwarf Binary Search Conclusions

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

LISA and Gravitational Wave Searches

- Crash Course in Gravitational Wave Physics
- The LISA Mission
- Mock LISA Data Challenges

2 White Dwarf Binary Search

- *F*-Statistic Search for Periodic Gravitational Waves
- MLDC1 Pipeline and Results
- MLDC2 Pipeline and Results

< □ > < 同 > < 回 > < 回

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Galactic Binaries Injected in MLDC2

Challenge 2.1 has 26 million galactic WD binaries, of which 59401 designated as "bright" sources

F-Stat Search for periodic GWsMLDC1 Pipeline and ResultsMLDC2 Pipeline and Results

Pipeline for Prix/Whelan MLDC2 Search

John T. Whelan john.whelan@ligo.org F-Stat Searches for WDBs in the MLDCs, G070778-00-Z

イロト イポト イヨト イヨト

F-Stat Search for periodic GWsMLDC1 Pipeline and ResultsMLDC2 Pipeline and Results

Pipeline for Prix/Whelan MLDC2 Search

イロト イポト イヨト イヨト

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Overview of Galactic Signals Recovered

Found many signals, but still missed some bright ones (especially at higher f)

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Statistics of Galactic Signals Recovered

Focus on sources w/expected $2\mathcal{F}>40$

Freqs	Found	Missed	Hidden	False
0–5 mHz	1012	3642	2	3
5–10 mHz	679	1363	1	8
10–15 mHz	73	90	0	0
15–20 mHz	2	5	0	0
20–27 mHz	0	3	0	0

"Hidden" sources were obscured by brighter sources within doppler param window

A D b 4 A b

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Sky Map of Found & Missed Binaries

Galaxy clearly visible

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Doppler Errors I: Frequency

No noticeable bias; accuracy comparable to MLDC1

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Doppler Errors II: Sky Position

Biggest errors due to "hemisphere flip": wrong sign of ecliptic latitude

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Amplitude Errors I: Magnitude

Systematic underestimate due to LWL response

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Amplitude Errors II: Phase

Systematic phase error due to LWL response

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Amplitude Errors III: Initial Phase

LWL errors lead to φ_0 error linear in *f*: time shift!

F-Stat Search for periodic GWsMLDC1 Pipeline and ResultsMLDC2 Pipeline and Results

Moving Beyond the LWL (Deepak Khurana)

 More precise modelling of LISA interferometry gives ("Rigid Adiabatic") expressions like

$$\begin{aligned} \frac{\overleftarrow{d}^{X}(f,\widehat{k})}{R(f)} &= \left(-i\frac{4\pi fL}{c}\right)e^{-i4\pi fL/c}\operatorname{sinc}\left(\frac{2\pi fL}{c}\right) \\ &\times \left\{\mathfrak{T}_{\widehat{n}_{2}}(f,\widehat{k})\frac{\widehat{n}_{2}\otimes\widehat{n}_{2}}{2} - \mathfrak{T}_{-\widehat{n}_{3}}(f,\widehat{k})\frac{\widehat{n}_{3}\otimes\widehat{n}_{3}}{2}\right\}\end{aligned}$$

- MLDC entries used $R(f)^{-1} = (-i\frac{4\pi fL}{c}) \& \overrightarrow{d} = \frac{\widehat{n}_2 \otimes \widehat{n}_2}{2} \frac{\widehat{n}_3 \otimes \widehat{n}_3}{2}$
- Work on implementating full $\vec{d}(f, \hat{k})$ (code restructuring) In the meantime, can use LWL \vec{d} &

$$R(f)^{-1} = \left(-i\frac{4\pi fL}{c}\right)e^{-i4\pi fL/c}\operatorname{sinc}\left(\frac{2\pi fL}{c}\right)$$

for partial Rigid Adiabatic Response

 \mathcal{F} -Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Amplitude Errors w/partial RAR: Initial Phase

Most of systematic drift removed; residual may be due to anisotropy of galaxy

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Amplitude Errors w/partial RAR: Phase

Phase errors much smaller

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Amplitude Errors w/partial RAR: Magnitude

Underestimate reduced by sinc fcn in R(f)

F-Stat Search for periodic GWs MLDC1 Pipeline and Results MLDC2 Pipeline and Results

Improved Signal Recovery w/RAR

Freqs	Long-W	avelength	Partial RA	
Freqs	Found	False	Found	False
0–5 mHz	1012	3	1064	5
5–10 mHz	679	8	708	9
10–15 mHz	73	0	78	0
15–20 mHz	2	0	2	0
20–27 mHz	0	0	0	0

Improved modelling of response pushes some signals above threshold

< A

Conclusions

- *F*-statistic method to find doppler-shifted periodic signals applied to mock LISA data
- Weaker signals can be mistaken for secondary maxima MLDC1 → MLDC2 pipeline improvements mitigate (Still, LISA experts can find 10× as many sources)
- Long- λ limit hampers determination of amp params doppler params still good at high freq
- Still working on full response, but partial RAR removes egregious phase errors
- Plan to submit MLDC1b entry w/improved pipeline & response