Double Optical Springs: Application to Gravitational Wave Detectors and Ponderomotive Squeezers

Henning Rehbein, Helge Müller-Ebhardt, Kentaro Somiya, Roman Schnabel, Thomas Corbitt, Christopher Wipf, Nergies Mavalvala, Stefan L. Danilishin, Karsten Danzmann, Yanbei Chen

Max-Planck-Institut für Gravitationsphysik (AEI) Institut für Gravitationsphysik, Leibniz Universität Hannover

Detuned SR Interferometer

- Gain of sensitivity around optical and optomechanical resonance
- In-band control without imposing fundamental noise
- suppressed sensitivity for frequencies below/above resonances
- Unstable optomechanical resonance

Optical Springs and Damping

- Detune resonant cavity to higher frequencies:
 - restoring optical spring (optical trapping)
 - anti-damping
- unstable, feedback required
- Detune resonant cavity to lower frequencies:
 - velocity-dependent
 viscous damping force
 (cold damping)
 - anti-restoring optical spring

dynamically unstable

Henning Rehbein

The Double Optical Spring

Motion of mirror:

$$\hat{x}(\Omega) = R_{xx} \left(\hat{F}_0(\Omega) + R_{FF}(\Omega) \hat{x}(\Omega) \right) + \text{GW Force}$$

For low frequencies one can split $R_{FF}(\Omega)$ into real and imaginary part

$$R_{FF}(\Omega) = -\frac{\theta^2}{4} \frac{\lambda}{(i\epsilon - \lambda + \Omega)(i\epsilon + \lambda + \Omega)} \approx \frac{\theta^2 \lambda}{4(\epsilon^2 + \lambda^2)} \left(1 + i\frac{2\epsilon\Omega}{(\epsilon^2 + \lambda^2)}\right) = K - i\Omega\gamma$$

Combine good features of two optical springs:

Spring A: bad-cavity scenario: antirestoring, damping

Spring B: good-cavity scenario: restoring, anti-damping

Total Spring: Stable system: damping, restoring

Double Optical Spring in Advanced LIGO

- Additional laser (subcarrier) can provide required optical spring
- Subcarrier resonates in the arms, but has different SR detuning phase [perhaps different polarization ...]
- Sensing both outputs separately improves sensitivity if appropriate filter is applied:

$$\hat{y} = K_1(\Omega) \ \hat{y}^{(1)} + K_2(\Omega) \ \hat{y}^{(2)}$$

- Second optical spring can stabilize interferometer without comprising classical noise
- Carrier and subcarrier have different SR cavities, then each equivalent to a different single detuned cavity

Henning Rehbein

Example Configurations 1

- Advanced LIGO configurations: *narrowband scenario:* $I_c=800 \text{ kW}, T_{\text{ITM}}=0.5\%, T_{\text{SR}}=7\%, \phi=\pi/2-0.044, \zeta=\pi/2+0.609$ *broadband scenario:* $I_c=800 \text{ kW}, T_{\text{ITM}}=0.5\%, T_{\text{SR}}=7\%, \phi=\pi/2-0.019, \zeta=\pi/2+1.266$
- DOS configurations: carrier and subcarrier with equal power (400 kW) and detunings as above but with opposite signs.
- Optical springs cancel each other ⇒ stable system
- Recover Advanced LIGO sensitivity above/below resonances

Example Configurations 2

 Advanced LIGO configuration: *narrowband scenario: I_c*⁽¹⁾=800 kW, *T*_{ITM}=0.5%, *T*_{SR}=7%, φ=π/2-0.044, ζ=π/2+0.609

Second carrier: $I_c^{(2)}=8$ kW, $\varepsilon^{(2)}=2\pi$ 5, $\lambda^{(2)}=-2\pi$ 55, $I_c^{(2)}=80$ kW, $\varepsilon^{(2)}=2\pi$ 60, $\lambda^{(2)}=-2\pi$ 60

Accessible Regime and Optimization

- For comparison with Advanced LIGO we fix total power to 800 kW
- Different optimizations of DOS interferometer:
 - NS-NS binary systems (narrowband)
 - Broadband optimization
- Comparison with Advanced LIGO optimized with same algorithm

 $P^{(1)}$ =800 kW - $P^{(2)}$, T_{ITM} =0.5%, T_{SR} =7%

Optimized noise Spectral Densities

The Double Optical Spring Experiment

Thomas Corbitt, Yanbei Chen, Edith Innerhofer, Helge Müller-Ebhardt, David Ottaway, Henning Rehbein, Daniel Sigg, Stanley Whitcomb, Christopher Wipf, and Nergis Mavalvala, PRL 98, 150802 (2007)

Route to Ponderomotive Squeezing

Henning Rehbein

Stabilization and Squeezing

Henning Rehbein

Conditional Squeezing

- B_{1,2}⁽¹⁾: mixed state B_{1,2}⁽²⁾: mixed state B_{1,2}⁽¹⁾, B_{1,2}⁽²⁾: pure state!!!
- Entanglement between carrier and subcarrier
- Conditioning recovers pure state
- Conditioning allows much more squeezing
- Conditional squeezing equivalent to "real" squeezing

Henning Rehbein

Conditional vs. Unconditional

Henning Rehbein

Squeezing with Classical Noise

P₁=2.85W, P₂=0.15W, L=0.9m, m=1g, T=800ppm, $\lambda_1/2\pi$ =30kHz, $\lambda_2/2\pi$ =-5kHz, ε/2π =10kHz, ω_m=2π 6 Hz, Q=10⁵

Henning Rehbein

How to Improve Squeezing

- Increase optical power
- Higher mechanical Q-factor
- Lower pendulum eigenfrequency
- Lower temperature

P₁=2.85W, P₂=0.15W, L=0.9m, m=1g, T=800ppm, $\lambda_1/2\pi$ =30kHz, $\lambda_2/2\pi$ =-5kHz, $\epsilon/2\pi$ =10kHz, ω_m =2 π 6 Hz, Q=10⁵,T=300K

P₁=11.4W, P₂=0.6W, L=0.9m, m=1g, T=800ppm, $\lambda_1/2\pi$ =24kHz, $\lambda_2/2\pi$ =-6kHz, ε/2π =10kHz, ω_m =2π 1 Hz, Q=10⁵, T=300K

Henning Rehbein

10³

10⁴

f [Hz]

10⁵

10²

Conclusion and Outlook

- Second optical spring can stabilize Advanced LIGO and improve sensitivity
- Classical electronic feedback mechanism replaced by quantum control
- Our proposed upgrade for Advanced LIGO should be realizable with low effort
- Combinable with other QND schemes, e.g. injection of squeezed vacuum
- Double optical spring helps to built efficient ponderomotive squeezing source
- Conditional measurement can remove entanglement between the two carrier fields

