Optical bench Seismic Isolation System (SAS) Prototyped for the HAM chambers of the Advanced LIGO Interferometers

Hannover, October 24th 2007

Benjamin Abbott⁽¹⁾, Yoichi Aso⁽³⁾, Valerio Boschi^(1,4), Dennis Coyne⁽¹⁾, Riccardo DeSalvo⁽¹⁾, Carlo Galli⁽⁵⁾, Gianni Gennaro⁽⁶⁾, Alex Ivanov⁽¹⁾, Szabolcs Marka⁽³⁾, David Ottaway⁽²⁾, Virginio Sannibale⁽¹⁾, Alberto Stochino^(1,2,4)), Chiara Vanni⁽⁵⁾,

- 1) LIGO Laboratory, Caltech, Pasadena, CA; 2) LIGO Laboratory, MIT, Cambridge, MA
 - 3) Columbia University, NY; 4) University of Pisa, Italy;
 - 5) Galli e Morelli, Lucca, Italy; 6) PROMEC, Bientina, Italy

Summary

Motivations for the SAS pre-attenuator

- HAM-SAS prototype
- System Performances
- Platform Controls

Conclusions

Design motivations

- Concerns about the complexity, lack of redundancy, long term reliability and cost of the baseline LIGO seismic pre-isolation system, HEPI + ISI.
- HAM chambers version prototyped
 - the most difficult as:
 - Optical table is supported from below the center of mass
 - Difficult installation in cramped space below opti-
 - BSC version much simpler and easier to realize
 - All key points tested by the HAM prototype
- Design targets to eliminate concerns:

Design targets: 1

- Instrument reliability:
 - Completely UHV compatible sensors and actuators (coils)
 - No in-vacuum active circuits
 - No in-vacuum pressurized volumes to avoid internal leaks
 - Redundancy of sensing and actuation for immunity from single point failures
- Complexity reduction:
 - Single passive attenuation stage replacing all three active stages of baseline design
 - Mitigation of cradle effect by geometrically separated horizontal and tilt d.o.f.
 - Higher tolerance of lower payload rigidity

Design targets: 2

- Ultra High Vacuum environment protection:
 - Actuation power limited to 100 mW max. for intrinsic protection against overheating and UHV pollution
- Tolerances and registering:
 - Wide tolerances and registering of critical dimensions (ease of ass.)
 - Designed to withstand 200°C component baking and 120°C post assembly baking
 - for UHV protection and guaranteed system stability
- Rigidity and controllability:
 - Large frequency ratio (≥100) between suspension resonances and internal resonances:
 - Optimal plant for positioning controls, and for possible future active attenuation upgrades

Design targets 3

- Tunable payload design:
 - To optimize for different loads and possible future upgrades
- Earthquake damage protection:
 - 10 mm stoke protection in all d.o.f. (Olympia 5 mm)
- Cost:
 - Single stage reduces costs by >0.25 to 0.5 M\$/unit (HAM/BSC)
 - (5 BSC units and 5 HAM units for each interferometer)
- Fast turnaround:
 - Started production in July 2006, tests stopped in April 2007

- The project evaluation dead time arrived before commissioning could be completed
- the LIGO project was forced to make a decision to stay with the baseline as the HAM-SAS had not demonstrated meeting all requirements by the deadline.
- Some of the data reported below was collected after the deadline

Target achievement

- Commissioning and testing stopped prematurely
 - no time for implementation of Center Of Percussion compensators
 - no time for fine alignments and low frequency resonance tuning
 - Little time for robustness and long term drift and stability measurements and ease of use/integration studies
- The Measured performance is:
 - in agreement with simulations of the system at the tested level of implementation
 - close to requirements/targets
- Means to improve performance have been identified and give high likelihood of being able to achieve requirements/targets with
 - the implementation of the components not yet implemented
 - further testing/development

Key mechanical features

- Designed primarily as a passive attenuation unit
 - Design similar an accelerometer inertial mass.
 - Soft support flexures to reach the lowest possible resonance freq.
 - Isolation performance limited by the flexure material characteristics, equal to the sensitivity of the best seismometers
- Minimally active controls, mainly for static positioning and suspension resonance suppression
 - (But plant optimized also for active attenuation)
- four-legged Inverted Pendulum table for the horizontal degrees of freedom (two translations and yaw)
- four GAS filters in the vertical degrees of freedom (vertical translation, pitch and roll)

Fundamentals of Passive Mechanical Filter

- Low resonant frequency:
 - early attenuation roll-off

(<100 mHz)

small control force requirements

(~mN)

- \Rightarrow Naturally vanishing resonances $Q \propto \omega_0^2$
- Center of Percussion Effect compensation:
 - ⇒ high frequency attenuation improvement (x10)

SAS Passive vertical Mechanical Filters

Vertical Isolation: Geometric Anti-Spring Filter (GAS)

LIGO

advancedligo

SAS Passive vertical Mechanical Filters

$$H_z(\omega) = \frac{\omega_0^2 (1 + i\phi) + \beta \omega^2}{\omega_0^2 (1 + i\phi) + \omega^2}$$

- -60 dB naked filters
- -80 dB with Center Of Percussion compensators

LIGO SAS Passive horizontal Mechanical Filters

IΡ

HAM-SAS

HAM-SAS construction

Vertical Sensor and Actuator

The G&M SAS team

LASTI HAM Chamber

insertion sliders

- Ease of installation
 - Designed and built UHV installation machinery
 - Allow installation of populated HAM bench

Sensors/Actuators

- Standard instrumentation
- 8 LVDTs
 - 4 horizontal: position spring box <-> ground
 - 4 vertical: position optics table <-> spring box
- 8 voice coil actuators
- Redundancy of 1 each 3 d.o.f. for reliability
- Test instrumentation
- 6 L4C witness geophones on the optical bench
- 3 Guralp seismometers on ground

Actuators

- 8 coil actuators coaxial with the LVDTs
- 8 stepper motors set the equilibrium position of the optics table

Horizontal actuator and LVDT

Vertical stepper motor Vertical actuator

Horizontal stepper motor

Angular Stabilization

- Center of Mass in HAM is above the tilt rotation axis
- Very low stiffness of the tilt modes makes the optics table angularly unstable
- ⇒ add stiffness exclusively to the angular modes (Rx and Ry)

$$k_{tilt}^{(z)} = 4\left(1 - \frac{l_0}{x_0}\right)k$$

LIGO ad HAM Optics Bench tests

optics bench Configuration

System Tested with higher Center of Mass than In worst possible case

triple pendulum

HAM-SAS supporting the optics table

Transmissibilities

Geophones/Seismometers (in air)

Horizontal performance

Vertical performance

Wire Resonance damping

LIGO ad Sensing and Driving Diagonalization

H= transfer function matrix; u=sensors; v= actuators

$$\mathbf{u} = \mathbf{H} \mathbf{v}$$

$$\mathbf{x} = \mathbf{S}\mathbf{u}$$

$$\mathbf{v} = \mathbf{D}\mathbf{q}$$

$$\mathbf{x} = \mathbf{H}\mathbf{q}$$

LIGO ad Virtual Sensor diagonalization

Vertical Power Spectra

Upstream the Sensing Matrix

Downstream the Sensing Matrix

LIGO-G070695-00-E Hannover October 24th 2007

LIGO Physical plant Modal Transfer Functions

Horizontal DOFs

Vertical DOFs

Frequency [Hz]

LIGO ad Performance at LASTI with LVDT control only

LIGO Performance with 6 DOFs Active Control

Onboard geophones feedback

- Thanks to the good plant design active attenuation is straightforward, despite the bad positioning of the geophones
- The geophone sensitivity limits the performance gain

Use of active controls

- Concerns were expressed that a free floating table freely recoil when the suspended optics it supports are actuated upon
- if feeding forward to the table actuators of an appropriate fraction of the force applied to the mirrors does not solve the problem
- the tested feedback scheme (previous figure) would fully and satisfactorily address the problem
- UHV compatible accelerometers of proven performance and reliability exist (Virgo and subsequent developments)

advancedligo

Accidents along the way...

- Severed actuator cabling
 - Continued operation until repair was possible
- SAS-optical bench interface plate accidentally warped
 - Vertical LVDT croocked
 - Sufficient clearance to operate with minor diagonalization complications
- Actuator Coil driver failure (oscillating rail to rail at full power)
 - For a week observed strange (x10 worse) performance degradation
 - No overheating, no UHV degradation, no significant table shaking
 - A very important consequence of the choice of soft flexures is the very low actuator power requirements, just enough to balance the leakage seismic noise power
 - => intrinsic safety of plant

Not implemented

- Resonance dampers
 - To cancel the 20 Hz spurious resonance
- Mechanical low frequency tuning
 - To improve the LF attenuation
- COP correction (both GAS & IP)
 - To gain an order of magnitude in attenuation at high frequency
- Tilt correction optimization
- Fine mechanical alignment

Conclusions

- Proven LIGO compatibility with:
 - Facility
 - UHV
 - CDS Control Systems
- Redundancy, Single Point Failure Tolerance, High Reliability
- Easy Controllability
- Long term Stability
- Earthquake protection over 10 mm excursion
- Seismic Attenuation Requirements achievable with implementation of missing components
- Tilt Seismic Noise Limited because of principle of equivalence
- but may be able to take advantage of the separation of the horizontal and tilt d.o.f.

Development status

- HAM prototype
 - Successfully tested

BSC design

- If needed, ready for rapid implementation in Ad-LIGO
- With required performance and enhanced reliability

35