

Enhanced LIGO Modulator

Volker Quetschke, Muzammil Arain, Rodica Martin, Wan Wu, Luke Williams, Guido Mueller, David Reitze, David Tanner University of Florida Supported by NSF grant PHY-0555453

Optics WG, October 24, 2007

LIGO-G070680-00-R

- LIGO is currently being upgraded to eLIGO
- Laser power will be increased to 30 W
- Electro-optic modulators (EOMs) must be replaced.
 - LiNbO3 modulators would suffer from severe thermal lensing or might even break
- eLIGO devices (techniques) will be used in AdvLIGO

Overview eLIGO EOMs

eLIGO EOMs

IGO

- Lithium niobate (LiNb03), used in initial LIGO, not satisfactory
 - Thermal lensing / Damage / Residual absorption
- Choose RTP (rubidium titanyl phosphate RbTiOPO4) as EO material
 - RTP has significantly lower absorption and therefore thermal lensing.
- Use custom made housing to separate the crystal housing from the housing for the resonant circuit.
 Advantage: Resonant frequencies can be changed without disturbing the optical alignment.
- Use wedged crystals to reduce spurious amplitude modulation
 Additional advantage: EOM acts as polarizer

Wedged RTP crystal

 AR coatings (< 0.1%) on crystal faces.

- Wedged crystal separates the polarizations and acts as a polarizer.
 - This avoids cavity effects and reduces amplitude modulation.

Polarization	Angle [degrees]
р	4.81
S	4.31

LIGO-G070680-00-R

IGO

LIGO Three Modulations / Single Crystal design

- Use one crystal but three separate pairs of electrodes to apply three different modulation frequencies at once.
- Electrodes:
 - 7 mm
 - 22 mm
 - 7 mm

Industry-quality housing

 Separate the crystal housing from the housing of the electronic circuits t maintain maximum flexibility.

Resonant circuit

- Impedance matching circuit in separate housing.
- Resonant circuit with 50 Ω input impedance.
- Current version at CalTech has three resonant circuits: – 24.5 / 33.0 / 61.2 MHz

Modulation index measurement

LIGO

Thermal properties

- Use a YLF laser was used to measure the thermal lensing.
 - Full Power = 42 W
 - Beam Waist = 0.5 mm (at RTP)
 - 4x4x40 mm RTP crystal

Axis	Focal length
X-axis	3.8 m
Y-axis	4.8 m

compare with LiNbO3 (20 mm long):
 f_{thermal} ~ 3.3 m @ 10 W

IGO

- Wedged geometry suppresses amplitude modulation. (No polarisation rotation possible)
 - Cursory result for the current version: $\Delta I/I < 10^{-5}$ at $\Omega_{mod} = 25.4$ MHz / m = 0.17
- Final characterization underway
 - Including RFAM at high power (30W) levels.

- Continue testing at CalTech with 30W eLIGO laser
 - RFAM
 - Thermal lensing
 - Long-term stability
 - EMI
- Start 200W (AdvLIGO) testing ...
 - Next week ...

Supplementary material

RTP Thermal properties

Properties	Units	RTP	RTA	KTP	LiNb0 ₃
dn_x/dT	10 ⁻⁶ /K	-	-	11	5.4
$dn_{}/dT$	10 ⁻⁶ /K	2.79	5.66	13	5.4
dn_z/dT	10 ⁻⁶ /K	9.24	11.0	16	37.9
K _x	W/Km	3		2	5.6
$\kappa_{_{\mathcal{V}}}$	W/Km	3		3	5.6
K _z	W/Km	3		3	5.6
α	cm ⁻¹	< 0.0005	< 0.005	< 0.005	< 0.05
Q_x	1/W	-	-	2.2	4.8
Q_{y}	1/W	0.047	0.94	2.2	4.8
Q_z	1/W	0.15	1.83	2.7	34

LIGO

Properties	Units/conditions	RTP	RTA	LiNbO ₃
Damage Threshold	MW/cm ² ,	>600	400	280
n_x	1064nm	1.742	1.811	2.23
n _v	1064nm	1.751	1.815	2.23
n_{r}	1064nm	1.820	1.890	2.16
Absorption coeff. α	cm ⁻¹ (1064 nm)	< 0.0005	< 0.005	< 0.005
r ₃₃	pm/V	39.6	40.5	30.8
r_{23}	pm/V	17.1	17.5	8.6
r_{13}	pm/V	12.5	13.5	8.6
r_{42}	pm/V	?	?	28
r ₅₁	pm/V	?	?	28
r_{22}	pm/V			3.4
$n_{z}^{3}r_{33}$	pm/V	239	273	306
Dielectric const., ε_{z}	500 kHz, 22 °C	30	19	
Conductivity, σ_{z}	Ω^{-1} cm ⁻¹ , 10 MHz	~10-9	3x10 ⁻⁷	
Loss Tangent, d_{z}	500 kHz, 22 °C	1.18	-	