

Adaptive Heating for Thermal Compensation in Advanced LIGO

Muzammil A. Arain, Volker Quetschke, Luke F. Williams, **Guido Mueller**, D. B. Tanner, and D. H. Reitze Department of Physics, University of Florida, Gainesville, Florida

Frontiers in Optics 2007, September 18, 2007

Research supported by The National Science Foundation through grants PHY-0555453 and PHY-0354999

Initial LIGO-LIGO today

Optical Layout of Advanced LIGO

The Foundation for The Gator Nation

G070620-00-E

advancedligo

Thermal Lensing Management in FI

- FI Construction
 - » Two TGG
 - » One Quartz Rotator
- Expected Thermal lensing
 - » 10 m focal length at 125 W
 - » 2.1 mm beam size
- Passive compensation
 - » Negative dn/dT compensation
 - » DKDP with appropriate thickness
 - » Limitations
 - Prior knowledge of absorption
 - Fixed compensation

Temperature Profile in TGG

advancedligo

Passive Compensation with Optimal DKDP Thickness

DKDP Compensation

Application in Advanced LIGO

Thermal Lensing in Mode Cleaner

- MC is a ring cavity
- 45⁰ angle of incidence at the flat mirrors
 - » Produces astigmatism
 - » Reduces mode coupling into IFO
- Produces astigmatism in the transmitted beam

Temperature Profile in MC Flat Mirrors

G070620-00-E

advancedligo

Compensation of Astigmatic Lens

• Four segment RH on DKDP

- » DKDP is surrounded by four RHs that can be used to apply different heating along two orthogonal directions
- » RHs are easy to manage because the control is electrical
- » Can be mounted along the barrel of the optic holder
- » Requires more heating
- » Four segmented RH on DKDP
- Elliptical shaped CO₂ Heating Beam
 - » An elliptical beam can be used to compensate astigmatism
 - » The dynamic range is quite high
 - » Much more flexible than RHs
 - » Requires extra beam for heating
 - » More expensive than RH

Simulation of Astigmatism Correction

Finite Element Analysis simulation using COMSOL

Adaptive heating Experiment using Fused Silica

Muzammil A. Arain et. al., 'Adaptive Beam Shaping by Controlled Thermal Lensing in Optical Elements", Applied Optics, Vol. 46, Issue 12, pp. 2153-2165 (April 2007).

Summary

- Adaptive heating of optical components is a useful technique for thermal compensation in high power application
- Thermal aberrations in Advanced LIGO Input Optics can be corrected by adopting:
 - » Negative TOC compensation plate
 - » RH on DKDP
 - » Elliptically shaped CO₂ beam heating
- This technique can also be used to realize non-Gaussian beam compensation

