

The search for gravitational waves

Marco Cavaglià

Department of Physics and Astronomy University of Mississippi LIGO Scientific Collaboration

The University of Mississippi

Liberal Arts Faculty Forum – Sept. 18th, 2007 LIGO-G070613-00-Z

Background picture from http://cgwp.gravity.psu.edu

What is a gravitational wave?

The University of Mississippi

A gravitational wave is:

$$Mr (h_{+} - ih_{\times})_{2,2} = 8\sqrt{\frac{\pi}{5}} \eta (M\Omega)^{2/3} \left[1 + \frac{55\eta - 107}{42} (M\Omega)^{2/3} + 2\pi (M\Omega) - \frac{2173 + 7483\eta - 2047\eta^2}{1512} (M\Omega)^{4/3} + \left(\frac{-107 + 34\eta}{21} \pi + \frac{56}{5} i\eta \right) (M\Omega)^{5/3} \right] e^{-im(\int \Omega dt - 2M\Omega \ln \Omega/\Omega_0)}.$$

$$\begin{split} \frac{dE}{dt} &= \lim_{r \to \infty} \left[\frac{r^2}{16\pi} \int_{\Omega} \left| \int_{-\infty}^t \Psi_4 d\tilde{t} \right|^2 d\Omega \right], \qquad \Psi_4 = \ddot{h}_+ - i\ddot{h}_\times \\ \frac{dP_i}{dt} &= -\lim_{r \to \infty} \left[\frac{r^2}{16\pi} \int_{\Omega} \ell_i \left| \int_{-\infty}^t \Psi_4 d\tilde{t} \right|^2 d\Omega \right], \\ \frac{dJ_z}{dt} &= -\lim_{r \to \infty} \left\{ \frac{r^2}{16\pi} \operatorname{Re} \left[\int_{\Omega} \left(\partial_{\phi} \int_{-\infty}^t \Psi_4 d\tilde{t} \right) \left(\int_{-\infty}^t \int_{-\infty}^t \overline{\Psi_4} d\tilde{t} d\hat{t} \right) d\Omega \right] \right\}, \end{split}$$

...OK, I'll try to keep it simple!

The University of Mississippi

A gravitational wave is a propagating disturbance of the spacetime

Einstein's General Relativity

The spacetime geometry is continuously distorted by the presence of mass (=energy).

When masses move rapidly, the spacetime becomes stirred by their motion: *ripples* start travelling outward with the speed of light

The University of Mississippi

What is the effect of a gravitational wave?

We will experiment on a graduate student (Mr. Jun-Qi Guo)

The University of Mississippi

- Coalescing binary neutron stars or black holes
- Spinning neutron stars
- Gravitational bursts (e.g. supernovae)
- Big bang gravitational echo

The University of Mississippi

- Coalescing binary neutron stars or black holes
- Spinning neutron stars
- Gravitational bursts (e.g. supernovae)
- Big bang gravitational echo

The University of Mississippi

Picture credit: NASA/CXC/AlfA; NRAO/VLA/NRL Liberal Arts Faculty Forum – Sept. 18th, 2007 LIGO-G070613-00-Z

- Coalescing binary neutron stars or black holes
- Spinning neutron stars
- Gravitational bursts (e.g. supernovae)

Big bang gravitational echo

The University of Mississippi

Picture credit: NASA/HST/STScl Liberal Arts Faculty Forum – Sept. 18th, 2007 LIGO-G070613-00-Z

- Coalescing binary neutron stars or black holes
- Spinning neutron stars
- Gravitational bursts
 (e.g. supernovae)

Big bang gravitational echo

The University of Mississippi

Picture credit: NASA/HST/STScI Liberal Arts Faculty Forum – Sept. 18th, 2007 LIGO-G070613-00-Z

- Coalescing binary neutron stars or black holes
- Spinning neutron stars
- Gravitational bursts (e.g. supernovae)

Big bang gravitational echo

Picture credit: NASA/WMAP

The University of Mississippi

How do we know that gravitational waves exist?

Indirect detection: slow down of a binary pulsar

R. Hulse J. Taylor

John Rowe Animation/Australia Telescope National Facility, CSIRO The University of Mississippi Liberal Arts Faculty Forum – Sept. 18th, 2007 LIGO-G070613-00-Z

Merger of a binary black hole system (equal-mass, unequal-spin black holes)

Time = 0.00M

(Picture credit: L. Rezzolla, Albert-Einstein Institute, Golm, Germany)

The University of Mississippi

Merger of a binary black hole system (equal-mass, zero-spin black holes)

(Courtesy of L. Rezzolla, Albert-Einstein Institute, Golm, Germany)

The University of Mississippi

What is LIGO?

The University of Mississippi

A way to answer is to use the most incredible scientific tool of the new millennium:

The University of Mississippi

LIGO is an interferometer

NSF

The LIGO Observatory

,UMISS,

Hanford (WA) 4 km + 2 km interferometers

The University of Mississippi

UMISS,

The University of Mississippi

The University of Mississippi

Vacuum equipment

The University of Mississippi

Core optic suspensions

The University of Mississippi

Core optics

The University of Mississippi

The control room

The University of Mississippi

LIGO sensitivity

The University of Mississippi

MAP 5.3 2007/08/15 23:20:36 35.335 140.389 MAP 6.5 2007/08/15 20:22:14 50.568 -177.507 30.2 NEAR THE COAST OF CENTRAL PERU 38.9 NEAR THE EAST COAST OF HONSHU, JAPAN 21.2 ANDREANOF ISLANDS, ALEUTIAN IS., ALASKA

The University of Mississippi

University of Michigan University of Minnesota The University of Mississippi Massachusetts Inst. of Technology **Monash University** Montana State University **Moscow State University** National Astronomical **Observatory of Japan** Northwestern University **University of Oregon** Pennsylvania State University **Rochester Inst. of Technology Rutherford Appleton Lab University of Rochester** San Jose State University Univ. of Sannio at Benevento, and Univ. of Salerno **University of Sheffield University of Southampton** Southeastern Louisiana Univ. Southern Univ. and A&M College **Stanford University University of Strathclyde Svracuse University** Univ. of Texas at Austin Univ. of Texas at Brownsville **Trinity University** Universitat de les Illes Balears **Univ. of Massachusetts Amherst University of Western Australia** Univ. of Wisconsin-Milwaukee Washington State University **University of Washington**

S

You can also contribute!

The University of Mississippi

The Einstein@home Project

http://www.einsteinathome.org

The University of Mississippi

Thank you!

The University of Mississippi