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Noise source: stray low frequency electrostatics
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Measurements of electrostatic force noise with LISA GRS

GRS capacitive sensor for LTP / LISA
* 4 mm X-sensing gaps

* Mo / Au-coated Shapal

Torsion Fiber
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—> Rotational measurements of
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Electrostatic stiffness from stray electrostatic fields
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« Stiffness from 100 kHz sensor bias roughly as modeled (30% below infinite plate prediction)

« Sensor OFF stiffness negligible = stiffness from patch charges not important for LISA!!
—> measurement confirmed recently in translation (4-mass pendulum)

- Benefit of 4 mm gaps, I’ ~ d3

* RMS patch voltage differences on ~ 4 mm domains no more than 50 mV



Electrostatic stiffness from TM charging
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» As expected from electrostatic model (roughly 30% below infinite plate model)

 Note: minimum magnitude obtained for V,,, ~ 60 mV (NOT 0 V)
—> DC biases effect charge measurement and stiffness



Noise source: DC biases and charge shot noise

Fluctuating test mass charge (cosmic ray shot noise)
forced by stray DC electrostatic “patch” fields
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* Ao~ 800 e/s (H. Araujo, LISA Symposium 2004) includes +/-, different charge number

Charge feels integrated effect from all patch fields

« Can be measured by applying a coherent TM bias (simulated charge)

» Can be cancelled by application of correct compensation voltage



N, (N m)

DC Bias: measurement and compensation

Veomp(MVY)

* DC biases compensated with Vgyp =+15 mV (intrinsic A, =-60 mV)

* Sub-mV measurement possible in 15 minutes integration

» Compensation possible to DAC resolution, in flight

* Random charging should not be problematic under normal conditions
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Noise source: in-band voltage noise mixing with DC bias
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Voltage noise: Vv, DC voltage difference: oV
* Actuation amplifier noise (electronics) * Test mass charge
« Thermal voltage fluctuations (8) * Residual unbalanced patch effects

* Drifting (not Brownian) DC bias S,!/2

LISA goal v_ =20 uV/Hz!? at 0.1 mHz



Stability 1n measured stray “DC” biases
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* Rotational DC bias imbalance A, measured over several days o

« “DC” biases drift away from (compensated) null over time

* Need to consider noise in “DC” biases
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Measured noise in stray “DC” biases
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Measured noise in stray “DC” biases
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Measured noise in stray “DC” biases
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» No excess voltage fluctuation noise observed above 0.1 mHz
* lo-limit of measurement: 200 uV/ Hz!"2 white noise near 0.2 mHz
« fit to 1/f 32 excess at lower frequencies



Measured noise in stray “DC” biases
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« fitting low frequency excess noise to 1/f?
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Noise budget for charge — stray voltage interaction

—— Charge shot noise
— Noisy voltages / DC charge :
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NB: “worst case” for stray voltage fluctuations is measurement limited (true
noise likely falls off with increasing frequency)



Continuous discharging tests
[UV discharging tests in collaboration with Imperial College]

» Use two UV lamps, one to charge (+12000 e/s) and one to discharge (-12000 e/s)
* (open loop) charge constant within several mV over 20 hour measurements

» Last measurement in absence of UV light demonstrates charge measurement resolution
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Continuous discharging tests

» create large TM charge fluctuations (20x LISA value) with net current zero by double

UV illumination Agpr> 20000 e/s

* no net increase in torque noise observed (resolution of roughly 5x LTP goal at 1 mHz)
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Experimental verification of random charge force noise model

Torque noise with:

S """"" —— Measured pendulum deflection
' — Expected deflection from measured charge data

* large charge fluctuations
produced by UV illumination

Agpr> 20000 efs
« large applied rotational DC
bias
Ay =12V
(+/- 3 V on electrodes)
s é 2?1 2?2 2.i3 2?4 25
Time (s) x105

» Observe low frequency excess in torque noise, in quantitative agreement with
random charge model and measured charge fluctuations:
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Effect of “self-interacting” fluctuating inhomogeneous DC biases
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Average DC bias imbalance
* Couples to TM charge

* Balancing 6V eliminates
charge coupling

* Remove charge, immune to
fluctuations in oV

oC
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[N = # domains / electrode]

) 8v,

oV,

True electrostatic potential distribution

« Balancing average oV eliminates coupling
to TM charge

« individual domain voltages cannot be
compensated

« force noise source independent of TM
charge

* Not much data, model dependent!

* Could be worse than Q*S,, 2

(Qqy = 107 e) by a factor of several



Low frequency electrostatic force noise: conclusions

Experimental data suggest:
* Integrated average DC bias imbalances (A,) of order 100 mV
* Stiffness not likely to be an issue (4 mm gaps!)
« Compensation of (A,) to <mV level 2 random charging problem curable
* Low frequency drift / fluctuations
* Need to correct periodically (or continuously) DC bias compensation

 For > 0.1 mHz - no excess noise in S, observed at 200 uV/Hz!”2
level (still above LISA goal)

* lower frequency excess observed, not yet understood

—>threatens LISA acceleration goals (in worst case) only at lowest
frequencies

* continuous measurement / discharge help reduce noise

—> Appears possible without introducing force noise

* Interaction between local DC biases and their own fluctuations needs to be
understood better



Extra slides



Purity of free-fall critical to LISA science

Example: massive black hole (MBH) mergers
Integrated SNR at 1 week intervals for year before merger
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Acceleration noise at and below 0.1 mHz determines how well, how far,
and how early we will see the most massive black hole mergers.



Dielectric Loss Angle Measurement Results
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Electrostatic noise source: thermal voltage noise from dissipation
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loss angle o:

Thermal voltage noise Thermal force noise generated
mixing with DC voltages to ( ) by electrostatic dissipation
produce force noise (imaginary spring constant)
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New technique to measure 0
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Measurement of dielectric losses: new direct measurement technique

Application of perfect square wave yields constant force
Any lossy element creates delays and thus force transients

Direct application
(f=.4 mHz)

4|

Application through an
ohmic delay

(t=7ms, =2 107
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S (CoulHz'?)

In-flight continuous measurement and compensation of Q, 4,
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Continuous charge measurement

* Sufficient to see charge fluctuations
below 0.1 mHz

» Allow “closed loop™ continuous
charge control to maintain Qp,, < 10°e

* No disturbance on interferometry axis
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Continuous measurement of A,

* Sufficient to measure and compensate
low frequency charge fluctuations

* Maintain low A, reduce low
frequency S,,

* Demands a force signal on critical
interferometry axis



DC Bias measurement and compensation (in lab and in flight)

» Applied oscillating TM bias simulates TM “charge”

» Excites torque and force proportional to integrated rotational and translational DC bias

imbalances V
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A, and A,
 “averaged” rotational and translational DC bias imbalances
 couple directly to TM charge to produce a torque (force)
* With torsion pendulum, measure and compensate A,

* A, statistically similar to translational imbalance A,

NB: for spatially uniform DC biases: A, =08V,5 +0V,5- 0V 5-0V,p



Different applied modulated E-fields
—> Distinguishing DC bias contributions

Vumon z @j Modulated AV between TM and whole sensor

—> sensitive to sum of all DC biases, (as with TM charge)
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Modulated AV only between TM and x-electrodes

—> sensitive only to x-clectrode DC biases

N :—VM{ a—civi} =V,
i(xel) 6¢

 Can distinguish and compensate DC bias contributions from different electrodes

ac,
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A¢(X el)

» As DC biases arise in electrodes and guard ring surfaces, cannot simultaneously
compensate both overall DC bias (A, or A,) and individual electrode DC biases (6V))

« True intrinsic DC bias values are important



Measured noise in stray “DC” biases
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* Excess noise in A, observed below 50 pHz
* Measurement limit (roughly 600 uV/Hz!/?) factor 30 - 50 above LISA goal



DC Bias measurement fluctuation correlations with TM motion




DC Bias measurement fluctuation correlations with TM motion
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Stability of x-electrode DC biases
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Measurement of Ay, using V=120 mV




Noise 1n x-electrode DC biases
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Measurement of A, using Vegyp= 120 mV



Experimental verification of random charge force noise model
[UV discharging tests in collaboration with Imperial College]

Torque noise excess with:

* large TM charge
fluctuations produce by UV

Qﬁ . . .
™ 1llumination
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| — Measured with UV 1« large applied rotational DC
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A¢ =12V
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» Observe low frequency excess in torque noise, in quantitative agreement with
random charge model and measured charge fluctuations:
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Continuous discharging tests

» create large TM charge fluctuations (20x LISA value) with net current zero by double

UV illumination Agpr> 20000 e/s

* no net increase in torque noise observed (resolution of roughly 5x LTP goal at 1 mHz)
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Continuous discharging tests
» Use two UV lamps, one to charge (+12000 e/s) and one to discharge (-12000 e/s)

* (open loop) maintain charge constant within several mV (within 10 mV of 0) over 20
hour measurements

» Last measurement in absence of UV light demonstrates charge measurement resolution
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Continuous discharging tests
« measurement resolution (seen above 10 Hz in absence of UV) 103 ¢/Hz!2
« with UV light, measured charge noise roughly 3 x the minimum shot noise level, consistent
with UV power fluctuations
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Sensor force noise upper limits from torsion pendulum noise data
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* Factor of 50 above LISA goal at 1 mHz
* Factor of 300 above LISA goal at 0.1 mHz
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Charge measurement resolution: 1 mass config, ,
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Readout
Stray torque (TM)
Spacecraft jitter (SC) [
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* Charge measurement noise as a function of measurement
frequency

* Assumes 1 Volt measurement voltage

» Assuming stray torque noise with differential force noise similar
to overall force noise budget (140 frad/s%/Hz!/?)

(not critical for charge measurement above 0.2 mHz)
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Charge measurement resolution: 1 mass config, 7

Frequency (Hz)

 Charge measurement noise as a function of measurement frequency for 1 hour
measurement time

« Stiffness discharge threshold of 107 charges (60 mV, 2% change in likely x-stiffness)

* Assumes 1 Volt measurement voltage



Charge measurement resolution: 1 mass config, 7
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 charge measurement noise (continuous measurement) as a function of modulation

frequency

* assume low-pass filtered torque signal, useful data only up to .5 fy,q

* can subtract noise related to TM charging and interaction with DC bias at low frequencies



